Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Ecotoxicol Environ Saf ; 278: 116404, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38705038

RESUMEN

Manganese (Mn) is an essential trace element for maintaining bodily functions. Excessive exposure to Mn can pose serious health risks to humans and animals, particularly to the nervous system. While Mn has been implicated as a neurotoxin, the exact mechanism of its toxicity remains unclear. Ferroptosis is a form of programmed cell death that results from iron-dependent lipid peroxidation. It plays a role in various physiological and pathological cellular processes and may be closely related to Mn-induced neurotoxicity. However, the mechanism of ferroptosis in Mn-induced neurotoxicity has not been thoroughly investigated. Therefore, this study aims to investigate the role and mechanism of ferroptosis in Mn-induced neurotoxicity. Using bioinformatics, we identified significant changes in genes associated with ferroptosis in Mn-exposed animal and cellular models. We then evaluated the role of ferroptosis in Mn-induced neurotoxicity at both the animal and cellular levels. Our findings suggest that Mn exposure causes weight loss and nervous system damage in mice. In vitro and in vivo experiments have shown that exposure to Mn increases malondialdehyde, reactive oxygen species, and ferrous iron, while decreasing glutathione and adenosine triphosphate. These findings suggest that Mn exposure leads to a significant increase in lipid peroxidation and disrupts iron metabolism, resulting in oxidative stress injury and ferroptosis. Furthermore, we assessed the expression levels of proteins and mRNAs related to ferroptosis, confirming its significant involvement in Mn-induced neurotoxicity.


Asunto(s)
Ferroptosis , Sobrecarga de Hierro , Peroxidación de Lípido , Manganeso , Oxidación-Reducción , Ferroptosis/efectos de los fármacos , Animales , Manganeso/toxicidad , Ratones , Peroxidación de Lípido/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Síndromes de Neurotoxicidad/patología , Masculino , Hierro/toxicidad , Hierro/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Humanos
2.
Sci Rep ; 14(1): 8465, 2024 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605082

RESUMEN

The relationship between oxygen sensing and autophagy in human sperms was explored in this study. Health semen and asthenozoospermia (astheno) semen were incubated with hypoxia-inducible factor-1α (HIF-1α) interferents, i.e., lificiguat (YC-1) or cobalt chloride (CoCl2), respectively. Label-free quantitative proteomic technology was used to identify the differentially expressed proteins in human semen under the hypoxia condition. Selected proteins were detected with ELISA. It was found that the autophagy levels of sperm in the YC-1 + health group or CoCl2 + astheno group increased while the vitality decreased. A total of 17, 34 and 35 differentially expressed proteins were observed in the Astheno group, the YC-1 + health group and the CoCl2 + astheno group, respectively. These proteins were primarily associated with protein processing in endoplasmic reticulum, Th17 cell differentiation, progesterone-mediated oocyte maturation, glycolysis/gluconeogenesis, HIF-1 signaling pathway, biosynthesis of amino acids, and carbon metabolism. The expression levels of protein HIF-1α, LC3B, histone H4, cathepsin L and ENO1 changed significantly in the groups. The study suggests that hypoxia can increase sperm autophagy level and reduce their vitality through HIF-1 signaling pathway and glycolysis/gluconeogenesis signaling pathway. Furthermore, proteins histone H4, cathepsin L, glutathione synthetase and ENO1 are proposed as potential biomarkers of autophagy and vitality in asthenozoospermia sperm.


Asunto(s)
Astenozoospermia , Histonas , Humanos , Masculino , Catepsina L , Hipoxia de la Célula , Proteómica , Semen , Hipoxia , Cobalto , Autofagia , Espermatozoides , Subunidad alfa del Factor 1 Inducible por Hipoxia
3.
Toxicology ; 502: 153727, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38216111

RESUMEN

Manganese is an essential trace element, but overexposure can cause neurotoxicity and subsequent neurodegenerative diseases. Ferroptosis is a form of cell death characterized by lipid peroxidation and iron overload inside cells, which is closely related to manganese neurotoxicity. Manganese can induce ferroptosis through multiple pathways: causing oxidative stress and increased cellular reactive oxygen species (ROS), resulting in lipid peroxidation; depleting glutathione (GSH) and weakening the antioxidant capacity of cells; disrupting iron metabolism and increasing iron-dependent lipid peroxidation; damaging mitochondrial function and disrupting the electron transport chain, leading to increased ROS production. Oxidative stress, iron metabolism disorders, lipid peroxidation, GSH depletion, and mitochondrial dysfunction, typical features of ferroptosis, have been observed in animal and cell models after manganese exposure. In summary, manganese can participate in the pathogenesis of neurodegenerative diseases by inducing events related to ferroptosis. This provides new insights into studying the mechanism of manganese neurotoxicity and developing therapeutic drugs.


Asunto(s)
Ferroptosis , Enfermedades Neurodegenerativas , Animales , Especies Reactivas de Oxígeno/metabolismo , Manganeso/toxicidad , Estudios Retrospectivos , Hierro/toxicidad , Hierro/metabolismo , Peroxidación de Lípido , Glutatión/metabolismo , Enfermedades Neurodegenerativas/inducido químicamente
4.
Toxicol Ind Health ; 36(8): 531-539, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32729384

RESUMEN

Bisphenol A (BPA) is an environmental endocrine disruptor and a risk factor for prostate cancer. The cystic fibrosis transmembrane conductance regulator (CFTR) is proposed to be a prostate cancer suppressor in some recent researches. However, the potential role and mechanism of CFTR in BPA-induced prostate cancer cells has not been well identified. In this study, BPA decreased the viability of human normal prostate RWPE-1 cells detected with a CCK-8 kit. The capacity of the cell line on soft agar colony formation, wound healing, and transwell invasion indicated malignant transformation induced by BPA. Western blot analysis demonstrated that the levels of CFTR and Bcl-2 decreased, whereas Bax level increased, and ELISA detection showed a decreased ATP level in BPA-exposed cells. Cell apoptosis was analyzed with Annexin V-FITC Detection Kit by flow cytometry. However, no significant difference was observed in cell viability and apoptosis rates compared to normal RWPE-1 cells. Our research revealed a potential role of CFTR in BPA-induced malignant transformation via mitochondrial apoptosis of normal prostate cells.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fenoles/farmacología , Próstata/efectos de los fármacos , Neoplasias de la Próstata/inducido químicamente , Neoplasias de la Próstata/metabolismo , Apoptosis , Compuestos de Bencidrilo/efectos adversos , Línea Celular , Humanos , Masculino , Mitocondrias , Fenoles/efectos adversos
5.
Toxicol Lett ; 332: 164-170, 2020 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-32659473

RESUMEN

Manganese (Mn) is an environmental pollutant having a toxic effect on Parkinson's disease, with significant damage seen in the neurons of basal ganglia. Hence, Mn pollution is a public health concern. A Sprague-Dawley rat model was used to determine the damage to basal nuclei, and the effect of Mn intake was detected using the Morris water maze test and transmission electron microscopy. The SH-SY5Y cell line was exposed to Mn, and downstream signaling was assessed to determine the mechanism of toxicity. Mn exposure injured neurons, repressing GABAAR receptors and inducing GABABR receptors. The synergistic effect of the GABABR receptor and Kir6.1-SUR1 or Kir6.2-SUR1 was found to be one of the potential factors for the secretion of α-synuclein. The accumulation of α-synuclein regulated downstream factors calmodulin (CAM) cAMP response element-binding protein (CREB), thereby impairing learning and memory. Other genes downstream of CREB, rather than the feedback regulation of CREB, and brain-derived neurotrophic factor might also be involved.


Asunto(s)
Canales KATP/efectos de los fármacos , Intoxicación por Manganeso/metabolismo , Receptores de GABA/efectos de los fármacos , alfa-Sinucleína/metabolismo , Animales , Ganglios Basales/patología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/efectos de los fármacos , Masculino , Intoxicación por Manganeso/psicología , Aprendizaje por Laberinto/efectos de los fármacos , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/psicología , Canales de Potasio de Rectificación Interna/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores de GABA-A/efectos de los fármacos , Receptores de GABA-B/efectos de los fármacos
6.
Biol Trace Elem Res ; 198(1): 224-230, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32100273

RESUMEN

As an essential trace element in the human body, manganese (Mn) is involved in many important biochemical reactions. However, excessive exposure to manganese can cause multiple systematic damages to the body. This study aims to investigate the effects of manganese exposure on serum hepatic enzymes in male rats at different time points. After adaptive feeding for 7 days, male Sprague-Dawley (SD) rats were injected intraperitoneally with 30 mg/kg MnCl2·4H2O once a day for 21 days at zeitgeber time point 2 (ZT2), ZT8, ZT14, and ZT20, respectively. We found that short-term repeated exposure to manganese caused slower body weight gain and increased relative liver and spleen weight index in male rats at different time points. Moreover, serum total bile acid (TBA) increased while aspartate aminotransferase (AST) decreased at ZT2, ZT8, and ZT20. Cholinesterase (ChE) decreased at ZT2 and ZT20, lactic dehydrogenase (LDH) decreased at ZT2, ZT14, and ZT20, and acid phosphatase (ACP) decreased at ZT2 and ZT14. Alkaline phosphatase (ALP) decreased at ZT2, ZT14, and ZT20, but increased at ZT8. Alanine amino transferase (ALT) decreased at ZT2 and ZT20, but increased at ZT8. There was a negative correlation between relative liver weight index with AST, ACP, ALP, and LDH, while a positive correlation with TBA. However, relative spleen weight index had a positive correlation with relative liver weight index and TBA, while a negative correlation with ALT, AST, ACP, ALP, LDH, and ChE. Our study shows that the injury of liver function is caused by short-term repeated manganese exposure at different time points. The time effect should be considered in manganese toxicity evaluation.


Asunto(s)
Hígado , Manganeso , Alanina Transaminasa , Animales , Aspartato Aminotransferasas , Pruebas de Función Hepática , Masculino , Manganeso/toxicidad , Ratas , Ratas Sprague-Dawley
7.
Asian Pac J Cancer Prev ; 20(11): 3251-3258, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31759346

RESUMEN

BACKGROUND: This research studied the relationship between maternal exposure to polychlorinated biphenyls and neonatal birth weight through systematic review and meta-analysis of existing literature. METHODS: We searched for all the studies published in MEDLINE / PUBMEDN / EMBASE (Medical Abstract Database) by June 2018, and seven studies had been selected. RESULTS: The results showed that there was significant correlation between birth weight reduction and PCBS exposure throughout pregnancy (ß=-0.586g, 95%CI:-0.629,-0.543). There was a negative correlation between birth weight and PCBs exposure and umbilical cord serum (ß=-0.833g) and maternal serum (ß= -0.504g).Subgroup analyses showed significantly different effects of PCBs exposure on birth weight in different regions, stages of pregnancy and study designs. It was thought the heterogeneity was mainly caused by geographical regions, stages of pregnancy, and the assessment methods. CONCLUSION: The meta analysis revealed a negative correlation between PCBs exposure and birth weight but there was significant difference in the correlation between birth weight loss.


Asunto(s)
Contaminantes Ambientales/toxicidad , Recién Nacido de Bajo Peso , Exposición Materna , Bifenilos Policlorados/toxicidad , Efectos Tardíos de la Exposición Prenatal/etiología , Femenino , Humanos , Recién Nacido , Embarazo , Efectos Tardíos de la Exposición Prenatal/patología , Pronóstico
8.
Artículo en Inglés | MEDLINE | ID: mdl-31216744

RESUMEN

Excessive manganese (Mn) exposure may adversely affect the central nervous system, and cause an extrapyramidal disorder known as manganism. The glutamine (Gln)/glutamate (Glu)-γ-aminobutyric acid (GABA) cycle and thyroid hormone system may be involved in Mn-induced neurotoxicity. However, the effect of Mn on the Gln/Glu-GABA cycle in the serum has not been reported. Herein, the present study aimed to investigate the effects of sub-acute Mn exposure on the Gln/Glu-GABA cycle and thyroid hormones levels in the serum of rats, as well as their relationship. The results showed that sub-acute Mn exposure increased serum Mn levels with a correlation coefficient of 0.733. Furthermore, interruption of the Glu/Gln-GABA cycle in serum was found in Mn-exposed rats, as well as thyroid hormone disorder in the serum via increasing serum Glu levels, and decreasing serum Gln, GABA, triiodothyronine (T3) and thyroxine (T4) levels. Additionally, results of partial correlation showed that there was a close relationship between serum Mn levels and the detected indicators accompanied with a positive association between GABA and T3 levels, as well as Gln and T4 levels in the serum of Mn-exposed rats. Unexpectedly, there was no significant correlation between serum Glu and the serum T3 and T4 levels. In conclusion, the results demonstrated that both the Glu/Gln-GABA cycle and thyroid hormone system in the serum may play a potential role in Mn-induced neurotoxicity in rats. Thyroid hormone levels, T3 and T4, have a closer relationship with GABA and Gln levels, respectively, in the serum of rats.


Asunto(s)
Glutamina/sangre , Manganeso/toxicidad , Hormonas Tiroideas/sangre , Tiroxina/sangre , Triyodotironina/sangre , Ácido gamma-Aminobutírico/sangre , Animales , Masculino , Manganeso/sangre , Ratas Sprague-Dawley
9.
Artículo en Inglés | MEDLINE | ID: mdl-28394286

RESUMEN

Excessive manganese (Mn) exposure is not only a health risk for occupational workers, but also for the general population. Sodium para-aminosalicylic acid (PAS-Na) has been successfully used in the treatment of manganism, but the involved molecular mechanisms have yet to be determined. The present study aimed to investigate the effects of PAS-Na on sub-chronic Mn exposure-induced impairments of spatial learning and memory, and determine the possible involvements of γ-aminobutyric acid (GABA) metabolism in vivo. Sprague-Dawley male rats received daily intraperitoneal injections MnCl2 (as 6.55 mg/kg Mn body weight, five days per week for 12 weeks), followed by daily subcutaneous injections of 100, 200, or 300 mg/kg PAS-Na for an additional six weeks. Mn exposure significantly impaired spatial learning and memory ability, as noted in the Morris water maze test, and the following PAS-Na treatment successfully restored these adverse effects to levels indistinguishable from controls. Unexpectedly, PAS-Na failed to recover the Mn-induced decrease in the overall GABA levels, although PAS-Na treatment reversed Mn-induced alterations in the enzyme activities directly responsible for the synthesis and degradation of GABA (glutamate decarboxylase and GABA-transaminase, respectively). Moreover, Mn exposure caused an increase of GABA transporter 1 (GAT-1) and decrease of GABA A receptor (GABAA) in transcriptional levels, which could be reverted by the highest dose of 300 mg/kg PAS-Na treatment. In conclusion, the GABA metabolism was interrupted by sub-chronic Mn exposure. However, the PAS-Na treatment mediated protection from sub-chronic Mn exposure-induced neurotoxicity, which may not be dependent on the GABA metabolism.


Asunto(s)
Ácido Aminosalicílico/farmacología , Intoxicación por Manganeso/patología , Manganeso/toxicidad , Memoria/efectos de los fármacos , Aprendizaje Espacial/efectos de los fármacos , Ácido gamma-Aminobutírico/sangre , Animales , Esquema de Medicación , Masculino , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Ácido gamma-Aminobutírico/metabolismo
10.
Biol Trace Elem Res ; 176(1): 143-153, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27491492

RESUMEN

Excessive intake of manganese (Mn) may cause neurotoxicity. Sodium para-aminosalicylic acid (PAS-Na) has been used successfully in the treatment of Mn-induced neurotoxicity. The γ-aminobutyric acid (GABA) is related with learning and memory abilities. However, the mechanism of PAS-Na on improving Mn-induced behavioral deficits is unclear. The current study was aimed to investigate the effects of PAS-Na on Mn-induced behavioral deficits and the involvement of ultrastructural alterations and γ-aminobutyric acid (GABA) metabolism in the basal ganglia of rats. Sprague-Dawley rats received daily intraperitoneally injections of 15 mg/kg MnCl2.4H2O, 5d/week for 4 weeks, followed by a daily back subcutaneously (sc.) dose of PAS-Na (100 and 200 mg/kg), 5 days/week for another 3 or 6 weeks. Mn exposure for 4 weeks and then ceased Mn exposure for 3 or 6 weeks impaired spatial learning and memory abilities, and these effects were long-lasting. Moreover, Mn exposure caused ultrastructural alterations in the basal ganglia expressed as swollen neuronal with increasing the electron density in the protrusions structure and fuzzed the interval of neuropil, together with swollen, focal hyperplasia, and hypertrophy of astrocytes. Additionally, the results also indicated that Mn exposure increased Glu/GABA values as by feedback loops controlling GAT-1, GABAA mRNA and GABAA protein expression through decreasing GABA transporter 1(GAT-1) and GABA A receptor (GABAA) mRNA expression, and increasing GABAA protein expression in the basal ganglia. But Mn exposure had no effects on GAT-1 protein expression. PAS-Na treatment for 3 or 6 weeks effectively restored the above-mentioned adverse effects induced by Mn. In conclusion, these findings suggest the involvement of GABA metabolism and ultrastructural alterations of basal ganglia in PAS-Na's protective effects on the spatial learning and memory abilities.


Asunto(s)
Ácido Aminosalicílico/farmacología , Ganglios Basales/efectos de los fármacos , Manganeso/farmacología , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/ultraestructura , Ganglios Basales/metabolismo , Ganglios Basales/ultraestructura , Western Blotting , Proteínas Transportadoras de GABA en la Membrana Plasmática/genética , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Expresión Génica/efectos de los fármacos , Ácido Glutámico/metabolismo , Masculino , Aprendizaje por Laberinto/fisiología , Memoria/fisiología , Microscopía Electrónica de Transmisión , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/ultraestructura , Neurópilo/efectos de los fármacos , Neurópilo/metabolismo , Neurópilo/ultraestructura , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo
11.
J Toxicol Sci ; 41(5): 573-81, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27665767

RESUMEN

Sodium para-aminosalicylate (PAS-Na) was first applied successfully in clinical treatment of two manganism patients with good prognosis. However, the mechanism of how PAS-Na protects against Mn-induced neurotoxicity is still elusive. The current study was conducted to explore the effects of PAS-Na on Mn-induced basal ganglia astrocyte injury, and the involvement of amino acid neurotransmitter in vitro. Basal ganglia astrocytes were exposed to 500 µM manganese chloride (MnCl2) for 24 hr, following by 50, 150, or 450 µM PAS-Na treatment for another 24 hr. MnCl2 significantly decreased viability of astrocytes and induced DNA damages via increasing the percentage of tail DNA and Olive tail moment of DNA. Moreover, Mn interrupted amino acid neurotransmitters by decreasing Gln levels and increasing Glu, Gly levels. In contrast, PAS-Na treatment reversed the aforementioned Mn-induced toxic effects on basal ganglia astrocytes. Taken together, our results demonstrated that excessive Mn exposure may induce toxic effects on basal ganglia astrocytes, while PAS-Na could protect basal ganglia astrocytes from Mn-induced neurotoxicity.


Asunto(s)
Ácido Aminosalicílico/farmacología , Astrocitos/efectos de los fármacos , Ganglios Basales/efectos de los fármacos , Cloruros/toxicidad , Daño del ADN/efectos de los fármacos , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Glicina/metabolismo , Intoxicación por Manganeso/prevención & control , Sustancias Protectoras/farmacología , Animales , Animales Recién Nacidos , Astrocitos/metabolismo , Astrocitos/patología , Ganglios Basales/metabolismo , Ganglios Basales/patología , Células Cultivadas , Citoprotección , Relación Dosis-Respuesta a Droga , Compuestos de Manganeso , Intoxicación por Manganeso/genética , Intoxicación por Manganeso/metabolismo , Intoxicación por Manganeso/patología , Ratas Sprague-Dawley
12.
Biol Trace Elem Res ; 170(2): 357-65, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26286965

RESUMEN

Manganese (Mn), an essential trace metal for protein synthesis and particularly neurotransmitter metabolism, preferentially accumulates in basal ganglia. However, excessive Mn accumulation may cause neurotoxicity referred to as manganism. Sodium para-aminosalicylic acid (PAS-Na) has been used to treat manganism with unclear molecular mechanisms. Thus, we aim to explore whether PAS-Na can inhibit Mn-induced neuronal injury in basal ganglia in vitro. We exposed basal ganglia neurons with 50 µM manganese chloride (MnCl2) for 24 h and then replaced with 50, 150, and 450 µM PAS-Na treatment for another 24 h. MnCl2 significantly decreased cell viability but increased leakage rate of lactate dehydrogenase and DNA damage (as shown by increasing percentage of DNA tail and Olive tail moment). Mechanically, Mn reduced glutathione peroxidase and catalase activity and interrupted amino acid neurotransmitter balance. However, PAS-Na treatment reversed the aforementioned Mn-induced toxic effects. Taken together, these results showed that PAS-Na could protect basal ganglia neurons from Mn-induced neurotoxicity.


Asunto(s)
Ácido Aminosalicílico/farmacología , Ganglios Basales/metabolismo , Intoxicación por Manganeso/metabolismo , Manganeso/toxicidad , Neuronas/metabolismo , Neurotransmisores/metabolismo , Animales , Ganglios Basales/patología , Células Cultivadas , Intoxicación por Manganeso/patología , Neuronas/patología , Oxidación-Reducción/efectos de los fármacos , Cultivo Primario de Células , Ratas , Ratas Sprague-Dawley
13.
Zhonghua Yu Fang Yi Xue Za Zhi ; 45(5): 422-5, 2011 May.
Artículo en Chino | MEDLINE | ID: mdl-21756785

RESUMEN

OBJECTIVE: To probe the effect of sodium para-aminosalicylate (PAS-Na) on concentration of amino acid neurotransmitters including glutamate (Glu), glutamine (Gln), glycine (Gly) and gamma-aminobutyric acid (GABA) in basal ganglia of subacute manganese (Mn)-exposed rats. METHODS: Forty Sprague-Dawley male rats were randomly divided into the control, Mn-exposed, low dose PAS-Na (L-PAS) and high dose PAS-Na (H-PAS) groups. Rats in experiment groups received daily intraperitoneally injections of manganese chloride (MnCl2 · 4H2O, 15 mg/kg), while rats in control group received daily intraperitoneally injections of normal saline (NS), all at 5 days/week for 4 weeks. Then the rats in PAS groups followed by a daily subcutaneously dose of PAS-Na (100 and 200 mg/kg as the L-PAS and H-PAS groups, respectively) for another 3 and 6 weeks; while the rats in Mn-exposed and control group received NS. The concentrations of Glu, Gln, Gly and GABA in basal ganglia of rat was detected by the high performance liquid chromatography fluorescence detection technique. RESULTS: After treating with PAS-Na for 3 weeks, the concentration of Gly in the Mn-exposed rats decreased to (0.165 ± 0.022) µmol/L (control = (0.271 ± 0.074) µmol/L, Mn vs control, t = 4.65, P < 0.05). After the further 6-week therapy with PAS-Na, the concentrations of Glu, Gln, Gly in the Mn-exposed rats were lower than those of the control rats ((0.942 ± 0.121), (0.377 ± 0.070), (0.142 ± 0.048), (1.590 ± 0.302), (0.563 ± 0.040), (0.247 ± 0.084) µmol/L; t = 7.72, 5.85, 4.30, P < 0.05); and also lower than in L-PAS and H-PAS groups, whose concentrations were separately (1.268 ± 0.124), (1.465 ± 0.196), (0.497 ± 0.050), (0.514 ± 0.103), (0.219 ± 0.034) µmol/L (L-PAS Glu and Gln vs Mn, t = 3.87, 3.77, P < 0.05; H-PAS Glu, Gln and Gly vs Mn, t = 6.78, 4.70, 3.42, P < 0.05). CONCLUSION: The toxic effect of manganese on Glu, Gln and Gly in basal ganglia of Mn-exposed rats is obvious, especially appears earlier on Gly. The toxic effect still continues to develop when relieved from the exposure. PAS-Na may play an antagonism role in toxic effect of manganese on concentration of Glu, Gln and Gly in basal ganglia of Mn-exposed rats.


Asunto(s)
Ganglios Basales/efectos de los fármacos , Ganglios Basales/metabolismo , Manganeso/toxicidad , Salicilato de Sodio/farmacología , Aminoácidos/metabolismo , Animales , Ácido Glutámico/metabolismo , Masculino , Neurotransmisores/metabolismo , Ratas , Ratas Sprague-Dawley , Ácido gamma-Aminobutírico/metabolismo
14.
Artículo en Chino | MEDLINE | ID: mdl-19351468

RESUMEN

OBJECTIVE: To establish the methods of calculating and analyzing the multi-coefficient of variation significance test for the toxicology study. METHODS: The paper aimed to confirm the significance level with the method of Bonferroni and then compared the methods of calculating and analyzing of the experiment groups with the control group respectively. RESULTS: The significance level of multi-coefficient of variation significance test was confirmed as alpha1=0.0167. Compared with the control groups, the activity of ALT in serum both in 30 mg/kg and 60 mg/kg groups did not change in the average significance test, which was not statistically significant (P>0.05), while it changed in the variation significance test, which was of statistical significance (P<0.0167). The activity of AST in serum in 60 mg/kg group did not change in the average significance test (P>0.05), while it changed in the variation significance test (P<0.0167). CONCLUSION: The complete changes of the indexes can only be shown by use of both the average significance test and the variation significance test together.


Asunto(s)
Intoxicación por Plomo/enzimología , Distribuciones Estadísticas , Alanina Transaminasa/sangre , Animales , Aspartato Aminotransferasas/sangre , Modelos Animales de Enfermedad , Femenino , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA