Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Sci Total Environ ; 929: 172478, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38621545

RESUMEN

Biostimulation by supplementing of nitrogen and phosphorus nutrients is a common strategy for remediation of petroleum-polluted soils. However, the dosage influence of exogenous nitrogen or phosphorus on petroleum hydrocarbon removal and soil ecotoxicity and microbial function remain unclear. In this study, we compared the efficiencies of hydrocarbon degradation and ecotoxicity control by experiment conducted over addition of inorganic nitrogen or phosphorus at C/N ratio of 100/10, C/N/P ratio of 100/10/1, and C/P ratio of 100/1 in a heavily petroleum-contaminated loessal soil with 12,320 mg/kg of total petroleum hydrocarbon (TPH) content. A 90-day incubation study revealed that low-dose of phosphorus addition with the C/P ratio of 100/1 promoted hydrocarbon degradation and reduced soil ecotoxicity. Microbial community composition analysis suggested that phosphorus addition enriched hydrocarbon degrader Gordonia and Mycolicibacterium genus. The key enzymes EC 5.3.3.8, EC 6.2.1.20 and EC 6.4.1.1 which referred to degradation of long-chain hydrocarbons, unsaturated fatty acids and pyruvate metabolism were abundance by phosphorus supplementation. While nitrogen addition at C/N ratio of 100/10 or C/N/P ratio of 100/10/1 inhibited hydrocarbon degradation and exacerbated soil ecotoxicity due to promoting denitrification and coupling reactions with hydrocarbons. Our results suggested that low-dose phosphorus addition served as a favorable strategy to promote crude oil remediation and ecotoxicity risk control in heavily petroleum-contaminated soil. Hence, the application of suitable doses of exogenous biostimulants is an efficient approach to restore the ecological functions of organically contaminated soils.


Asunto(s)
Biodegradación Ambiental , Hidrocarburos , Petróleo , Fósforo , Microbiología del Suelo , Contaminantes del Suelo , Suelo , Suelo/química , Restauración y Remediación Ambiental/métodos , Contaminación por Petróleo , Nitrógeno
2.
J Hazard Mater ; 470: 134137, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38555671

RESUMEN

Petroleum hydrocarbons pose a significant threat to human health and the environment. Biochar has increasingly been utilized for soil remediation. This study investigated the potential of biochar immobilization using Serratia sp. F4 OR414381 for the remediation of petroleum-contaminated soil through a pot experiment conducted over 90 days. The treatments in this study, denoted as IMs (maize straw biochar-immobilized Serratia sp. F4), degraded 82.5% of the total petroleum hydrocarbons (TPH), 59.23% of the aromatic, and 90.1% of the saturated hydrocarbon fractions in the loess soils. During remediation, the soil pH values decreased from 8.76 to 7.33, and the oxidation-reduction potential (ORP) increased from 156 to 229 mV. The treatment-maintained soil nutrients of the IMs were 138.94 mg/kg of NO3- -N and 92.47 mg/kg of available phosphorus (AP), as well as 11.29% of moisture content. The activities of soil dehydrogenase (SDHA) and catalase (CAT) respectively increased by 14% and 15 times compared to the CK treatment. Three key petroleum hydrocarbon degradation genes, including CYP450, AJ025, and xylX were upregulated following IMs treatment. Microbial community analysis revealed that a substantial microbial population of 1.01E+ 09 cells/g soil and oil-degrading bacteria such as Salinimicrobium, Saccharibacteria_genera_incertae_sedis, and Brevundimonas were the dominant genera in IMs treatment. This suggests that the biochar immobilized on Serratia sp. F4 OR414381 improves soil physicochemical properties and enhances interactions among microbial populations, presenting a promising and environmentally friendly approach for the stable and efficient remediation of petroleum-contaminated loess soil.


Asunto(s)
Biodegradación Ambiental , Carbón Orgánico , Hidrocarburos , Petróleo , Serratia , Microbiología del Suelo , Contaminantes del Suelo , Serratia/metabolismo , Serratia/genética , Contaminantes del Suelo/metabolismo , Carbón Orgánico/química , Petróleo/metabolismo , Hidrocarburos/metabolismo , Contaminación por Petróleo , Suelo/química
3.
Microb Ecol ; 86(4): 2436-2446, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37278908

RESUMEN

Petroleum contamination is a severe threat to the soil environment. Previous studies have demonstrated that petroleum degradation efficiency is promoted by enhancing soil moisture content (MC). However, the effects of MC on soil microbial ecological functions during bioremediation remain unclear. Here, we investigated the impacts of 5% and 15% of moisture contents on petroleum degradation, soil microbial structures and functions, and the related genes using high-throughput sequencing and gene function prediction. Results indicated that petroleum biodegradation efficiency was increased by 8.06% in the soils with 15% MC when compared to that with 5% of MC. The complexity and stability of soil microbial community structures with 15% MC were higher than those in the soils with 5% MC when hydrocarbon-degrading bacterial flora (HDBF) were inoculated into the soils. Fifteen percent of moisture content strengthened the interaction of the bacterial community network and reduced the loss of some key bacteria species including Mycobacterium, Sphingomonas, and Gemmatimonas. Some downregulated gene pathways relating to bioaugmentation were enhanced in the soils with 15% MC. The results suggested that the dynamic balances of microbial communities and the metabolic interactions by 15% MC treatment are the driving forces for the enhancement of bioremediation in petroleum-contaminated soil.


Asunto(s)
Petróleo , Contaminantes del Suelo , Suelo/química , Contaminantes del Suelo/análisis , Microbiología del Suelo , Biodegradación Ambiental , Hidrocarburos/metabolismo , Bacterias/genética , Bacterias/metabolismo , Biología Computacional
4.
Chemosphere ; 308(Pt 3): 136446, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36113659

RESUMEN

With the crude oil exploration activities in the Shanbei oilfield of China, the risk of soil contamination with crude oil spills has become a major concern. This study aimed at assessing the bioremediation potential of the petroleum polluted soils by investigating the expression of key functional genes decoding alkane and aromatic component degradation using an array of primers and real-time quantitative PCR (qPCR), and the functional microbiomes were determined using a combination of substrate-induced metabolic responses and high throughput sequencing. The results showed that the species that were more inclined to degrade aliphatic fraction of crude oil included Acinetobacter, Stenotrophomonas, Neorhizobium and Olivebacter. And Pseudomonas genus was a highly specific keystone species with the potential to degrade PAH fraction. Both aliphatic and PAH-degrading genes were upregulated when the soil petroleum contents were less than 10,000 mg/kg but downregulated when the oil contents were over 10,000 mg/kg. Bioremediation potential could be feasible for medium pollution with petroleum contents of less than 10,000 mg/kg. Optimization of the niche of Acinetobacter, Stenotrophomonas, Pseudomonas, Neorhizobium and Olivebacter species was beneficial to the biodegradation of refractory hydrocarbon components in the Shanbei plateau oilfield.


Asunto(s)
Contaminación por Petróleo , Petróleo , Contaminantes del Suelo , Alcanos , Biodegradación Ambiental , Secuenciación de Nucleótidos de Alto Rendimiento , Hidrocarburos/metabolismo , Yacimiento de Petróleo y Gas , Petróleo/análisis , Contaminación por Petróleo/análisis , Suelo , Microbiología del Suelo , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA