Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(14): 18236-18244, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38536118

RESUMEN

Hydrogels play a pivotal role in the realm of iontronics, contributing to the realization of futuristic human-machine interactions. The electric double layer (EDL) between the hydrogel and electrode provides an essential ionic-electronic coupling interface. While prior investigations primarily delved into elucidating the formation mechanism of the EDL, our study shifts the focus to showcasing the current generation through the mechanical modulation of the EDL at the hydrogel-metal interfaces. The dynamic EDL was constructed by the mechano-driven contact-separation process between the polyacrylamide (PAAm) hydrogel and Au. Influencing factors on the dynamic regulation of the EDL such as ion concentration, types of salt, contact-separation frequency, and deformation degree were investigated. Dehydration usually limits the practical applications of hydrogels, and it is a long-standing and difficult problem. However, it seemed to be able to slow the EDL formation process here, resulting in a sustained continuous direct current signal output. Such hydrogel iontronics could rectify the displacement electronic current of a triboelectric nanogenerator by the ionic current. The directional migration of ions could be further enhanced by using charge-collecting metals with different work functions, for example, Au and Al. It offers a paradigm to enable ionic rectification that could be seamlessly incorporated into electronic systems, ushering in a new era for efficient energy harvesting and biomimetic nervous systems.

2.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 38(5): 979-985, 2021 Oct 25.
Artículo en Chino | MEDLINE | ID: mdl-34713666

RESUMEN

The aim of this study is to construct an injectable gel with stable phototherapy and chemotherapy. Res-PTX@IR780 gel with phototherapy and chemotherapy property was prepared by introduction of photosensitizer IR780 and antioxidant resveratrol (Res) into the polyethylene glycol (PEG) solution of paclitaxel (PTX). The results showed that PTX, PTX@IR780 and Res-PTX@IR780 could form gels and the gels were injectable. ATR-FTIR results indicated not only components of the gels but also the formation of hydrogen bonding during the gelation. The results of UV showed instability of IR780 solution and stability improvement of Res-IR780 solution under infrared radiation (IR) irradiation. Photothermal tests showed that Res-PTX@IR780 displayed better photothermal conversion and photothermal stability under multiple irradiations than PTX@IR780. The results of in vivo exploration in mice showed that the skin site injected with Res-PTX@IR780 gel heated up from 35 ℃ to 64 ℃, and the temperature difference was up to 30 ℃. Res-PTX@IR780 gel is very promising as a combination agent of photothermal therapy and chemotherapy for the in situ treatment of tumors due to good photothermal conversion and photothermal stability under multiple irradiations.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Animales , Línea Celular Tumoral , Geles , Ratones , Ratones Endogámicos BALB C , Paclitaxel , Fototerapia
3.
ACS Biomater Sci Eng ; 7(1): 335-349, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33371671

RESUMEN

Injectable self-healing hydrogels containing functional nanoparticles (NPs) have attracted much attention in many fields of biomedicine. A series of injectable self-healing hydrogels containing PEGylation CuS NPs based on N-carboxyethyl chitosan (CEC) and oxidized sodium alginate (OA) were developed by taking advantages of the unique functions of CuS NPs and chitosan, referred to as CuS NP hydrogels or CEC-OAm-CuSn, where "m" stands for the concentration percentage of the added OA solution (w/v) and "n" represents the molar concentration of CuS NPs in the hydrogels. The physical properties of CuS NP hydrogels, syringeability, rapid self-repair ability, and photothermal performance were systematically investigated. The multiple functions for CuS NP hydrogels requested in the skin healing process were explored. The results showed that CuS NP hydrogels had not only adjustable physical properties and good injectable self-healing characteristics but also excellent functionalities, concurrently including hemostatic ability, bacteria killing capability, and cell migration and proliferation promotion. In vivo wound healing and histomorphological examinations of immunofluorescence staining in a mouse full-thickness wound model demonstrated good acceleration effects of these hydrogels for infected wound healing. Therefore, these injectable self-healing CuS NP hydrogels which possess the abilities of hemostasis, antibacterial activity, and infected-wound healing promotion exhibit great potential as in situ wound dressings.


Asunto(s)
Hidrogeles , Nanopartículas , Animales , Antibacterianos/farmacología , Cobre , Hemostasis , Hidrogeles/farmacología , Ratones , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA