Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Genome Biol ; 25(1): 199, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075580

RESUMEN

BACKGROUND: Phosphorus is a macronutrient necessary for plant growth and development and its availability and efficient use affect crop yields. Leaves are the largest tissue that uses phosphorus in plants, and membrane phospholipids are the main source of cellular phosphorus usage. RESULTS: Here we identify a key process for plant cellular phosphorus recycling mediated by membrane phospholipid hydrolysis during leaf senescence. Our results indicate that over 90% of lipid phosphorus, accounting for more than one-third of total cellular phosphorus, is recycled from senescent leaves before falling off the plants. Nonspecific phospholipase C4 (NPC4) and phospholipase Dζ2 (PLDζ2) are highly induced during leaf senescence, and knockouts of PLDζ2 and NPC4 decrease the loss of membrane phospholipids and delay leaf senescence. Conversely, overexpression of PLDζ2 and NPC4 accelerates the loss of phospholipids and leaf senescence, promoting phosphorus remobilization from senescent leaves to young tissues and plant growth. We also show that this phosphorus recycling process in senescent leaves mediated by membrane phospholipid hydrolysis is conserved in plants. CONCLUSIONS: These results indicate that PLDζ2- and NPC4-mediated membrane phospholipid hydrolysis promotes phosphorus remobilization from senescent leaves to growing tissues and that the phospholipid hydrolysis-mediated phosphorus recycling improves phosphorus use efficiency in plants.


Asunto(s)
Fosfatos , Fosfolipasa D , Hojas de la Planta , Hojas de la Planta/metabolismo , Fosfatos/metabolismo , Fosfolipasa D/metabolismo , Fosfolipasa D/genética , Senescencia de la Planta , Arabidopsis/metabolismo , Arabidopsis/genética , Fósforo/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fosfolípidos/metabolismo , Fosfolipasas/metabolismo , Hidrólisis , Regulación de la Expresión Génica de las Plantas
2.
Plant Cell Physiol ; 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37847101

RESUMEN

Nitrogen is one of the most essential macronutrients for plant growth and its availability in soil is vital for agricultural sustainability and productivity. However, excessive nitrogen application could reduce the nitrogen use efficiency and produce environmental pollution. Here, we systematically determined the response in lipidome and metabolome in rapeseed during nitrogen starvation. Plant growth was severely retarded during nitrogen deficiency, while the levels of most amino acids was significantly decreased. The levels of monogalactosyl diacyglycerol (MGDG) in leaves and roots was significantly decreased, while the level of digalactosyl diacylglycerol (DGDG) was significantly decreased in roots, resulting in significant reduction of MGDG/DGDG ratio during nitrogen starvation. Meanwhile, the levels of sulfoquinovosyl diacylglycerol, phosphatidylglycerol and glucuronosyl diacylglycerol was reduced to varying extents. Moreover, the levels of metabolites in the tricarboxylic acid cycle, Calvin cycle, and energy metabolism was changed during nitrogen deficiency. These findings show that nitrogen deprivation alters the membrane lipid metabolism and carbon metabolism, and our study provides valuable information to further understand the response of rapeseed to nitrogen deficiency at metabolism level.

3.
J Integr Plant Biol ; 65(11): 2421-2436, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37642157

RESUMEN

Phosphorus is a major nutrient vital for plant growth and development, with a substantial amount of cellular phosphorus being used for the biosynthesis of membrane phospholipids. Here, we report that NON-SPECIFIC PHOSPHOLIPASE C4 (NPC4) in rapeseed (Brassica napus) releases phosphate from phospholipids to promote growth and seed yield, as plants with altered NPC4 levels showed significant changes in seed production under different phosphate conditions. Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9)-mediated knockout of BnaNPC4 led to elevated accumulation of phospholipids and decreased growth, whereas overexpression (OE) of BnaNPC4 resulted in lower phospholipid contents and increased plant growth and seed production. We demonstrate that BnaNPC4 hydrolyzes phosphosphingolipids and phosphoglycerolipids in vitro, and plants with altered BnaNPC4 function displayed changes in their sphingolipid and glycerolipid contents in roots, with a greater change in glycerolipids than sphingolipids in leaves, particularly under phosphate deficiency conditions. In addition, BnaNPC4-OE plants led to the upregulation of genes involved in lipid metabolism, phosphate release, and phosphate transport and an increase in free inorganic phosphate in leaves. These results indicate that BnaNPC4 hydrolyzes phosphosphingolipids and phosphoglycerolipids in rapeseed to enhance phosphate release from membrane phospholipids and promote growth and seed production.


Asunto(s)
Brassica napus , Fosfolípidos , Esfingolípidos , Fosfolipasas de Tipo C , Brassica napus/crecimiento & desarrollo , Fosfolipasas de Tipo C/metabolismo , Esfingolípidos/metabolismo , Fosfolípidos/metabolismo , Sistemas CRISPR-Cas , Proteínas de Plantas/metabolismo , Semillas/crecimiento & desarrollo , Técnicas de Inactivación de Genes
4.
Cell Rep ; 40(2): 111060, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35830794

RESUMEN

The plastid-localized nucleotide triphosphate transporter (NTT) transports cytosolic adenosine triphosphate (ATP) into plastid to satisfy the needs of biochemistry activities in plastid. Here, we investigate the key functions of two conserved BnaNTT1 genes, BnaC06.NTT1b and BnaA07.NTT1a, in Brassica napus. Binding assays and metabolic analysis indicate that BnaNTT1 binds ATP/adenosine diphosphate (ADP), transports cytosolic ATP into chloroplast, and exchanges ADP into cytoplasm. Thylakoid structures are abnormal and plant growth is retarded in CRISPR mutants of BnaC06.NTT1b and BnaA07.NTT1a. Both BnaC06.NTT1b and BnaA07.NTT1a play important roles in the regulation of ATP/ADP homeostasis in plastid. Manipulation of BnaC06.NTT1b and BnaA07.NTT1a causes significant changes in glycolysis and membrane lipid composition, suggesting that increased ATP in plastid fuels more seed-oil accumulation. Together, this study implicates the vital role of BnaC06.NTT1b and BnaA07.NTT1a in plant metabolism and growth in B. napus.


Asunto(s)
Brassica napus , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Brassica napus/genética , Brassica napus/metabolismo , Regulación de la Expresión Génica de las Plantas , Homeostasis , Plastidios/genética
5.
Mol Breed ; 42(9): 54, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37313423

RESUMEN

The plastid inner envelope membrane-bond nucleotide triphosphate transporter (NTT) transports cytosolic adenosine triphosphate (ATP) into plastid, which is necessary for the biochemical activities in plastid. We identified a chloroplast-localized BnaC08.NTT2 and obtained the overexpressed lines of BnaC08.NTT2 and CRISPR/Cas9 edited double mutant lines of BnaC08.NTT2 and BnaA08.NTT2 in B. napus. Further studies certified that overexpression (OE) of BnaC08.NTT2 could help transport ATP into chloroplast and exchange adenosine diphosphate (ADP) and this process was inhibited in BnaNTT2 mutants. Additional results showed that the thylakoid was abnormal in a8 c8 double mutants, which also had lower photosynthetic efficiency, leading to retarded plant growth. The BnaC08.NTT2 OE plants had higher photosynthetic efficiency and better growth compared to WT. OE of BnaC08.NTT2 could improve carbon flowing into protein and oil synthesis from glycolysis both in leaves and seeds. Lipid profile analysis showed that the contents of main chloroplast membrane lipids, including monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and phosphatidylglycerol (PG), were significantly reduced in mutants, while there were no differences in OE lines compared to WT. These results suggest that BnaNTT2 is involved in the regulation of ATP/ADP homeostasis in plastid to impact plant growth and seed oil accumulation in B. napus. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01322-8.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA