Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Neuroinflammation ; 21(1): 93, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622654

RESUMEN

The neuroinflammatory process in synucleinopathies of the aging population such as Parkinson's disease (PD) and dementia with Lewy bodies (DLB) involves microglial activation as well as infiltration of the CNS by T cells and natural killer T cells (NKTs). To evaluate the potential of targeting NKT cells to modulate neuroinflammation, we treated α-syn transgenic (tg) mice (e.g.: Thy1 promoter line 61) with an antibody against CD1d, which is a glycoprotein expressed in antigen presenting cells (APCs). CD1d-presented lipid antigens activate NKT cells through the interaction with T cell receptor in NKTs, resulting in the production of cytokines. Thus, we hypothesized that blocking the APC-NKT interaction with an anti-CD1d antibody might reduce neuroinflammation and neurodegeneration in models of DLB/PD. Treatment with the anti-CD1d antibody did not have effects on CD3 (T cells), slightly decreased CD4 and increased CD8 lymphocytes in the mice. Moreover, double labeling studies showed that compared to control (IgG) treated α-syn tg mice, treatment with anti-CD1d decreased numbers of CD3/interferon γ (IFN γ)-positive cells, consistent with NKTs. Further double labeling studies showed that CD1d-positive cells co-localized with the astrocytes marker GFAP and that anti-CD1d antibody reduced this effect. While in control α-syn tg mice CD3 positive cells were near astrocytes, this was modified by the treatment with the CD1d antibody. By qPCR, levels of IFN γ, CCL4, and interleukin-6 were increased in the IgG treated α-syn tg mice. Treatment with CD1d antibody blunted this cytokine response that was associated with reduced astrocytosis and microgliosis in the CNS of the α-syn tg mice treated with CD1d antibody. Flow cytometric analysis of immune cells in α-syn tg mice revealed that CD1d-tet + T cells were also increased in the spleen of α-syn tg mice, which treatment with the CD1d antibody reduced. Reduced neuroinflammation in the anti-CD1d-treated α-syn tg mice was associated with amelioration of neurodegenerative pathology. These results suggest that reducing infiltration of NKT cells with an antibody against CD1d might be a potential therapeutical approach for DLB/PD.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Ratones , Animales , alfa-Sinucleína/genética , Cuerpos de Lewy/patología , Enfermedades Neuroinflamatorias , Enfermedad de Parkinson/patología , Ratones Transgénicos , Inmunoterapia/métodos , Citocinas , Inmunoglobulina G
2.
Front Neurosci ; 17: 1239009, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37719154

RESUMEN

Introduction: Alpha-synuclein (α-Syn) aggregation, transmission, and contribution to neurotoxicity represent central mechanisms underlying Parkinson's disease. The plant alkaloid "nicotine" was reported to attenuate α-Syn aggregation in different models, but its precise mode of action remains unclear. Methods: In this study, we investigated the effect of 2-week chronic nicotine treatment on α-Syn aggregation, neuroinflammation, neurodegeneration, and motor deficits in D-line α-Syn transgenic mice. We also established a novel humanized neuronal model of α-Syn aggregation and toxicity based on treatment of dopaminergic neurons derived from human induced pluripotent stem cells (iPSC) with α-Syn preformed fibrils (PFF) and applied this model to investigate the effects of nicotine and other compounds and their modes of action. Results and discussion: Overall, our results showed that nicotine attenuated α-Syn-provoked neuropathology in both models. Moreover, when investigating the role of nicotinic acetylcholine receptor (nAChR) signaling in nicotine's neuroprotective effects in iPSC-derived dopaminergic neurons, we observed that while α4-specific antagonists reduced the nicotine-induced calcium response, α4 agonists (e.g., AZD1446 and anatabine) mediated similar neuroprotective responses against α-Syn PFF-provoked neurodegeneration. Our results show that nicotine attenuates α-Syn-provoked neuropathology in vivo and in a humanized neuronal model of synucleinopathy and that activation of α4ß2 nicotinic receptors might mediate these neuroprotective effects.

3.
Front Neurosci ; 17: 1202208, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37449271

RESUMEN

Introduction: People with DS are highly predisposed to Alzheimer's disease (AD) and demonstrate very similar clinical and pathological features. Ts65Dn mice are widely used and serve as the best-characterized animal model of DS. Methods: We undertook studies to characterize age-related changes for AD-relevant markers linked to Aß, Tau, and phospho-Tau, axonal structure, inflammation, and behavior. Results: We found age related changes in both Ts65Dn and 2N mice. Relative to 2N mice, Ts65Dn mice showed consistent increases in Aß40, insoluble phospho-Tau, and neurofilament light protein. These changes were correlated with deficits in learning and memory. Discussion: These data have implications for planning future experiments aimed at preventing disease-related phenotypes and biomarkers. Interventions should be planned to address specific manifestations using treatments and treatment durations adequate to engage targets to prevent the emergence of phenotypes.

4.
Sci Transl Med ; 15(695): eabq6089, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37163617

RESUMEN

Alterations in the p38 mitogen-activated protein kinases (MAPKs) play an important role in the pathogenesis of dementia with Lewy bodies (DLB) and Parkinson's disease (PD). Activation of the p38α MAPK isoform and mislocalization of the p38γ MAPK isoform are associated with neuroinflammation and synaptic degeneration in DLB and PD. Therefore, we hypothesized that p38α might be associated with neuronal p38γ distribution and synaptic dysfunction in these diseases. To test this hypothesis, we treated in vitro cellular and in vivo mouse models of DLB/PD with SKF-86002, a compound that attenuates inflammation by inhibiting p38α/ß, and then investigated the effects of this compound on p38γ and neurodegenerative pathology. We found that inhibition of p38α reduced neuroinflammation and ameliorated synaptic, neurodegenerative, and motor behavioral deficits in transgenic mice overexpressing human α-synuclein. Moreover, treatment with SKF-86002 promoted the redistribution of p38γ to synapses and reduced the accumulation of α-synuclein in mice overexpressing human α-synuclein. Supporting the potential value of targeting p38 in DLB/PD, we found that SKF-86002 promoted the redistribution of p38γ in neurons differentiated from iPS cells derived from patients with familial PD (carrying the A53T α-synuclein mutation) and healthy controls. Treatment with SKF-86002 ameliorated α-synuclein-induced neurodegeneration in these neurons only when microglia were pretreated with this compound. However, direct treatment of neurons with SKF-86002 did not affect α-synuclein-induced neurotoxicity, suggesting that SKF-86002 treatment inhibits α-synuclein-induced neurotoxicity mediated by microglia. These findings provide a mechanistic connection between p38α and p38γ as well as a rationale for targeting this pathway in DLB/PD.


Asunto(s)
Proteína Quinasa 14 Activada por Mitógenos , Enfermedad de Parkinson , Humanos , Ratones , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , alfa-Sinucleína/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Enfermedades Neuroinflamatorias , Neuronas/metabolismo , Ratones Transgénicos
5.
Methods Mol Biol ; 2383: 447-457, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34766306

RESUMEN

Alzheimer's disease (AD), Pick's disease, fronto-temporal lobar degeneration, cortico-basal degeneration, and primary age related tauopathy are examples of neurodegenerative disorders with tau accumulation and jointly referred as "tauopathies." The mechanisms through which tau leads to neurodegeneration are not fully understood but include conversion into toxic oligomers and protofibrils, cell-to-cell propagation, post-transcriptional modifications and as a mediator of cell death signals among others. Potential therapeutics includes reducing tau synthesis (e.g., anti-sense); targeting selective tau species and aggregates or blocking cell-to-cell transmission (e.g., antibodies) or by promoting clearance of tau (e.g., autophagy activators). Among them, immunotherapy is currently one of the approaches most actively explored including active, passive, and cellular. A potential problem with immunotherapy has been the trafficking of the antibodies into the CNS. In this chapter, we describe a method for the production and testing of viral vector driven, brain-penetrating, single chain antibodies that specifically recognize 3RTau. These single chain antibodies are modified by the addition of a fragment of the apoB protein to facilitate trafficking into the brain, once in the CNS these antibody fragments recognize tau with potential value for the treatment of AD and related dementias.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/terapia , Encéfalo/metabolismo , Degeneración Corticobasal , Humanos , Factores Inmunológicos , Anticuerpos de Cadena Única , Tauopatías , Proteínas tau/metabolismo
6.
Alzheimers Dement ; 18(6): 1203-1234, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34757693

RESUMEN

INTRODUCTION: People with Down syndrome (DS) are predisposed to Alzheimer's disease (AD). The amyloid hypothesis informs studies of AD. In AD-DS, but not sporadic AD, increased APP copy number is necessary, defining the APP gene dose hypothesis. Which amyloid precursor protein (APP) products contribute needs to be determined. METHODS: Brain levels of full-length protein (fl-hAPP), C-terminal fragments (hCTFs), and amyloid beta (Aß) peptides were measured in DS, AD-DS, non-demented controls (ND), and sporadic AD cases. The APP gene-dose hypothesis was evaluated in the Dp16 model. RESULTS: DS and AD-DS differed from ND and AD for all APP products. In AD-DS, Aß42 and Aß40 levels exceeded AD. APP products were increased in the Dp16 model; increased APP gene dose was necessary for loss of vulnerable neurons, tau pathology, and activation of astrocytes and microglia. DISCUSSION: Increases in APP products other than Aß distinguished AD-DS from AD. Deciphering AD-DS pathogenesis necessitates deciphering which APP products contribute and how.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Síndrome de Down , Dosificación de Gen , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Modelos Animales de Enfermedad , Síndrome de Down/genética , Humanos , Ratones
7.
Alzheimers Dement ; 17(2): 271-292, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32975365

RESUMEN

OBJECTIVE: Recent clinical trials targeting amyloid beta (Aß) and tau in Alzheimer's disease (AD) have yet to demonstrate efficacy. Reviewing the hypotheses for AD pathogenesis and defining possible links between them may enhance insights into both upstream initiating events and downstream mechanisms, thereby promoting discovery of novel treatments. Evidence that in Down syndrome (DS), a population markedly predisposed to develop early onset AD, increased APP gene dose is necessary for both AD neuropathology and dementia points to normalization of the levels of the amyloid precursor protein (APP) and its products as a route to further define AD pathogenesis and discovering novel treatments. BACKGROUND: AD and DS share several characteristic manifestations. DS is caused by trisomy of whole or part of chromosome 21; this chromosome contains about 233 protein-coding genes, including APP. Recent evidence points to a defining role for increased expression of the gene for APP and for its 99 amino acid C-terminal fragment (C99, also known as ß-CTF) in dysregulating the endosomal/lysosomal system. The latter is critical for normal cellular function and in neurons for transmitting neurotrophic signals. NEW/UPDATED HYPOTHESIS: We hypothesize that the increase in APP gene dose in DS initiates a process in which increased levels of full-length APP (fl-APP) and its products, including ß-CTF and possibly Aß peptides (Aß42 and Aß40), drive AD pathogenesis through an endosome-dependent mechanism(s), which compromises transport of neurotrophic signals. To test this hypothesis, we carried out studies in the Ts65Dn mouse model of DS and examined the effects of Posiphen, an orally available small molecule shown in prior studies to reduce fl-APP. In vitro, Posiphen lowered fl-APP and its C-terminal fragments, reversed Rab5 hyperactivation and early endosome enlargement, and restored retrograde transport of neurotrophin signaling. In vivo, Posiphen treatment (50 mg/kg/d, 26 days, intraperitoneal [i.p.]) of Ts65Dn mice was well tolerated and demonstrated no adverse effects in behavior. Treatment resulted in normalization of the levels of fl-APP, C-terminal fragments and small reductions in Aß species, restoration to normal levels of Rab5 activity, reduced phosphorylated tau (p-tau), and reversed deficits in TrkB (tropomyosin receptor kinase B) activation and in the Akt (protein kinase B [PKB]), ERK (extracellular signal-regulated kinase), and CREB (cAMP response element-binding protein) signaling pathways. Remarkably, Posiphen treatment also restored the level of choline acetyltransferase protein to 2N levels. These findings support the APP gene dose hypothesis, point to the need for additional studies to explore the mechanisms by which increased APP gene expression acts to increase the risk for AD in DS, and to possible utility of treatments to normalize the levels of APP and its products for preventing AD in those with DS. MAJOR CHALLENGES FOR THE HYPOTHESIS: Important unanswered questions are: (1) When should one intervene in those with DS; (2) would an APP-based strategy have untoward consequences on possible adaptive changes induced by chronically increased APP gene dose; (3) do other genes present on chromosome 21, or on other chromosomes whose expression is dysregulated in DS, contribute to AD pathogenesis; and (4) can one model strategies that combine the use of an APP-based treatment with those directed at other AD phenotypes including p-tau and inflammation. LINKAGE TO OTHER MAJOR THEORIES: The APP gene dose hypothesis interfaces with the amyloid cascade hypothesis of AD as well as with the genetic and cell biological observations that support it. Moreover, upregulation of fl-APP protein and products may drive downstream events that dysregulate tau homeostasis and inflammatory responses that contribute to propagation of AD pathogenesis.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Inhibidores de la Colinesterasa/administración & dosificación , Síndrome de Down/genética , Endosomas , Fenotipo , Fisostigmina/análogos & derivados , Enfermedad de Alzheimer/fisiopatología , Precursor de Proteína beta-Amiloide/genética , Animales , Modelos Animales de Enfermedad , Síndrome de Down/metabolismo , Endosomas/metabolismo , Endosomas/patología , Humanos , Ratones , Neuronas/metabolismo , Fosforilación , Fisostigmina/administración & dosificación
8.
J Neuroinflammation ; 17(1): 214, 2020 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-32680537

RESUMEN

BACKGROUND: α-Synuclein (α-syn) is a pre-synaptic protein which progressively accumulates in neuronal and non-neuronal cells in neurodegenerative diseases such as Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy. Recent evidence suggests that aberrant immune activation may be involved in neurodegeneration in PD/DLB. While previous studies have often focused on the microglial responses, less is known about the role of the peripheral immune system in these disorders. METHODS: To understand the involvement of the peripheral immune system in PD/DLB, we evaluated T cell populations in the brains of α-syn transgenic (tg) mice (e.g., Thy1 promoter line 61) and DLB patients. RESULTS: Immunohistochemical analysis showed perivascular and parenchymal infiltration by CD3+/CD4+ helper T cells, but not cytotoxic T cells (CD3+/CD8+) or B cells (CD20+), in the neocortex, hippocampus, and striatum of α-syn tg mice. CD3+ cells were found in close proximity to the processes of activated astroglia, particularly in areas of the brain with significant astrogliosis, microgliosis, and expression of pro-inflammatory cytokines. In addition, a subset of CD3+ cells co-expressed interferon γ. Flow cytometric analysis of immune cells in the brains of α-syn tg mice revealed that CD1d-tet+ T cells were also increased in the brains of α-syn tg mice suggestive of natural killer T cells. In post-mortem DLB brains, we similarly detected increased numbers of infiltrating CD3+/CD4+ T cells in close proximity with blood vessels. CONCLUSION: These results suggest that infiltrating adaptive immune cells play an important role in neuroinflammation and neurodegeneration in synucleinopathies and that modulating peripheral T cells may be a viable therapeutic strategy for PD/DLB.


Asunto(s)
Inmunidad Adaptativa/fisiología , Encéfalo/metabolismo , Enfermedad por Cuerpos de Lewy/metabolismo , Linfocitos T/metabolismo , alfa-Sinucleína/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Encéfalo/inmunología , Encéfalo/patología , Femenino , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Enfermedad por Cuerpos de Lewy/inmunología , Enfermedad por Cuerpos de Lewy/patología , Masculino , Ratones , Ratones Transgénicos , Linfocitos T/inmunología , Linfocitos T/patología , alfa-Sinucleína/inmunología
10.
Alzheimers Dement ; 15(9): 1133-1148, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31378574

RESUMEN

INTRODUCTION: Immunotherapeutic approaches targeting amyloid ß (Aß) protein and tau in Alzheimer's disease and α-synuclein (α-syn) in Parkinson's disease are being developed for treating dementia with Lewy bodies. However, it is unknown if single or combined immunotherapies targeting Aß and/or α-syn may be effective. METHODS: Amyloid precursor protein/α-syn tg mice were immunized with AFFITOPEs® (AFF) peptides specific to Aß (AD02) or α-syn (PD-AFF1) and the combination. RESULTS: AD02 more effectively reduced Aß and pTau burden; however, the combination exhibited some additive effects. Both AD02 and PD-AFF1 effectively reduced α-syn, ameliorated degeneration of pyramidal neurons, and reduced neuroinflammation. PD-AFF1 more effectively ameliorated cholinergic and dopaminergic fiber loss; the combined immunization displayed additive effects. AD02 more effectively improved buried pellet test behavior, whereas PD-AFF1 more effectively improved horizontal beam test; the combined immunization displayed additive effects. DISCUSSION: Specific active immunotherapy targeting Aß and/or α-syn may be of potential interest for the treatment of dementia with Lewy bodies.


Asunto(s)
Péptidos beta-Amiloides/inmunología , Inmunoterapia , Enfermedad por Cuerpos de Lewy/inmunología , alfa-Sinucleína/inmunología , Enfermedad de Alzheimer , Animales , Humanos , Factores Inmunológicos , Ratones , Enfermedad de Parkinson
11.
J Alzheimers Dis ; 70(3): 621-628, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31282421

RESUMEN

Dr. Robert Terry (January 14, 1924-May 20, 2017) studied normal aging and Alzheimer's disease for more than five decades. He was at a visionary neuropathologist who trained generations of researchers in the field of neurodegenerative disorders and was always at the cutting edge of incorporating ever advancing technology into the fields of neuroscience and neuropathology. He was among the first to study plaques and tangles using electron microscopy, described the effects of aluminum on neurons, and collaborated to develop new approaches to study synaptic pathology in the context of cognitive impairment in Alzheimer's disease. Dr. Terry made indelible contributions to our understanding of Alzheimer's disease and dementia. In memory of Bob: veteran, physician-scientist, collaborator, friend, husband, and father.


Asunto(s)
Envejecimiento , Enfermedad de Alzheimer , Neuropatología/historia , Neurociencias/historia , Envejecimiento/patología , Envejecimiento/psicología , Enfermedad de Alzheimer/historia , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/psicología , Historia del Siglo XX , Humanos , Investigación/historia , Estados Unidos
12.
J Neurovirol ; 25(5): 622-633, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30790184

RESUMEN

People over the age of 50 are the fastest growing segment of the HIV-infected population in the USA. Although antiretroviral therapy has remarkable success controlling the systemic HIV infection, HIV-associated neurocognitive disorder (HAND) prevalence has increased or remained the same among this group, and cognitive deficits appear more severe in aged patients with HIV. The mechanisms of HAND in the aged population are not completely understood; a leading hypothesis is that aged individuals with HIV might be at higher risk of developing Alzheimer's disease (AD) or one of the AD-related dementias (ADRD). There are a number of mechanisms through which chronic HIV disease alone or in combination with antiretroviral therapy and other comorbidities (e.g., drug use, hepatitis C virus (HCV)) might be contributing to HAND in individuals over the age of 50 years, including (1) overlapping pathogenic mechanisms between HIV and aging (e.g., decreased proteostasis, DNA damage, chronic inflammation, epigenetics, vascular), which could lead to accelerated cellular aging and neurodegeneration and/or (2) by promoting pathways involved in AD/ADRD neuropathogenesis (e.g., triggering amyloid ß, Tau, or α-synuclein accumulation). In this manuscript, we will review some of the potential common mechanisms involved and evidence in favor and against a role of AD/ADRD in HAND.


Asunto(s)
Complejo SIDA Demencia/etiología , Complejo SIDA Demencia/epidemiología , Complejo SIDA Demencia/patología , Edad de Inicio , Anciano , Anciano de 80 o más Años , Proteínas Amiloidogénicas/metabolismo , Fármacos Anti-VIH/uso terapéutico , Autofagia , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/virología , Comorbilidad , Epigénesis Genética , Femenino , VIH/aislamiento & purificación , VIH/fisiología , Humanos , Macrófagos/virología , Masculino , Microglía/virología , Persona de Mediana Edad , Células-Madre Neurales/patología , Trastornos Neurocognitivos/epidemiología , Agregación Patológica de Proteínas , Proteostasis , Tropismo Viral , Sustancia Blanca/patología
13.
Sci Rep ; 8(1): 18083, 2018 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-30591714

RESUMEN

Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are neurodegenerative disorders of the aging population characterized by the accumulation of α-synuclein (α-syn). The mechanisms triggering α-syn toxicity are not completely understood, however, c-terminus truncation of α-syn by proteases such as calpain may have a role. Therefore, inhibition of calpain may be of value. The main objective of this study was to evaluate the effects of systemically administered novel low molecular weight calpain inhibitors on α-syn pathology in a transgenic mouse model. For this purpose, non-tg and α-syn tg mice received the calpain inhibitors - Gabadur, Neurodur or a vehicle, twice a day for 30 days. Immunocytochemical analysis showed a 60% reduction in α-syn deposition using Gabadur and a 40% reduction using Neurodur with a concomitant reduction in c-terminus α-syn and improvements in neurodegeneration. Western blot analysis showed a 77% decrease in α-spectrin breakdown products (SBDPs) SBDPs with Gabadur and 63% reduction using Neurodur. There was a 65% reduction in the active calpain form with Gabadur and a 45% reduction with Neurodur. Moreover, treatment with calpain inhibitors improved activity performance of the α-syn tg mice. Taken together, this study suggests that calpain inhibition might be considered in the treatment of synucleinopathies.


Asunto(s)
Calpaína/antagonistas & inhibidores , Glicoproteínas/farmacología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Modelos Animales de Enfermedad , Inmunohistoquímica , Enfermedad por Cuerpos de Lewy/tratamiento farmacológico , Enfermedad por Cuerpos de Lewy/etiología , Ratones , Ratones Transgénicos , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/etiología , alfa-Sinucleína/química
14.
J Alzheimers Dis ; 62(1): 1-13, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29439357

RESUMEN

It has been a year since we lost Dale Schenk on September 30, 2016. Dale's visionary work resulted in the remarkable discovery in 1999 that an experimental amyloid-ß (Aß) vaccine reduced the neurodegeneration in a transgenic model of Alzheimer's disease (AD). Following Dale's seminal work, several active and passive immunotherapies have since been developed and tested in the clinic for AD, Parkinson's disease (PD), and other neurodegenerative disorders. Here we provide a brief overview of the current state of development of immunotherapy for AD, PD, and other neurodegenerative disorders in the context of this anniversary. The next steps in the development of immunotherapies will require combinatorial approaches mixing antibodies against various targets (e.g., Aß, α-syn, Tau, and TDP43) with small molecules that block toxicity, aggregation, inflammation, and promote cell survival.


Asunto(s)
Enfermedades Neurodegenerativas/historia , Aniversarios y Eventos Especiales , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Inmunoterapia , Enfermedades Neurodegenerativas/terapia , Estados Unidos
15.
J Alzheimers Dis ; 61(3): 1201-1219, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29332037

RESUMEN

Alzheimer's disease (AD) is the most common tauopathy, characterized by progressive accumulation of amyloid-ß (Aß) and hyperphosphorylated tau. While pathology associated with the 4-repeat (4R) tau isoform is more abundant in corticobasal degeneration and progressive supranuclear palsy, both 3R and 4R tau isoforms accumulate in AD. Many studies have investigated interactions between Aß and 4R tau in double transgenic mice, but few, if any, have examined the effects of Aß with 3R tau. To examine this relationship, we crossed our APP751 mutant line with our recently characterized 3R tau mutant model to create a bigenic line (hAPP-3RTau) to model AD neuropathology. Mice were analyzed at 3 and 6 months of age for pathological and behavioral endpoints. While both the 3RTau and the hAPP-3RTau mice showed neuronal loss, increased tau aggregation, Aß plaques and exhibited more behavioral deficits compared to the non-tg control, the bigenic mice often displaying relatively worsening levels. We found that even in young animals we found that the presence of APP/Aß increased the accumulation of 3R tau in the neocortex and hippocampus. This observation was accompanied by activation of GSK3 and neurodegeneration in the neocortex and CA1 region. These results suggest that in addition to 4R tau, APP/Aß may also enhance accumulation of 3R tau, a process which may be directly relevant to pathogenic pathways in AD. Our results demonstrate that this bigenic model closely parallels the pathological course of AD and may serve as a valuable model for testing new pharmacological interventions.


Asunto(s)
Enfermedad de Alzheimer/patología , Hipocampo/patología , Neocórtex/patología , Péptidos beta-Amiloides/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Masculino , Ratones , Ratones Transgénicos , Tauopatías/patología , Proteínas tau/metabolismo
16.
Acta Neuropathol ; 135(1): 33-47, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29058121

RESUMEN

Multiple system atrophy (MSA) is a rapidly progressing fatal synucleinopathy of the aging population characterized by parkinsonism, dysautonomia, and in some cases ataxia. Unlike other synucleinopathies, in this disorder the synaptic protein, α-synuclein (α-syn), predominantly accumulates in oligodendroglial cells (and to some extent in neurons), leading to maturation defects of oligodendrocytes, demyelination, and neurodegeneration. The mechanisms through which α-syn deposits occur in oligodendrocytes and neurons in MSA are not completely clear. While some studies suggest that α-syn might transfer from neurons to glial cells, others propose that α-syn might be aberrantly overexpressed by oligodendroglial cells. A number of in vivo models have been developed, including transgenic mice overexpressing α-syn under oligodendroglial promoters (e.g.: MBP, PLP, and CNP). Other models have been recently developed either by injecting synthetic α-syn fibrils or brain homogenates from patients with MSA into wild-type mice or by using viral vectors expressing α-syn under the MBP promoter in rats and non-human primates. Each of these models reproduces some of the neuropathological and functional aspects of MSA; however, none of them fully replicate the spectrum of MSA. Understanding better the mechanisms of how α-syn accumulates in oligodendrocytes and neurons will help in developing better models that recapitulate various pathogenic aspects of MSA in combination with translatable biomarkers of early stages of the disease that are necessary to devise disease-modifying therapeutics for MSA.


Asunto(s)
Atrofia de Múltiples Sistemas/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Atrofia de Múltiples Sistemas/patología
17.
J Neurosci ; 38(4): 1000-1014, 2018 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-29246926

RESUMEN

Dementia with Lewy bodies, Parkinson's disease, and Multiple System Atrophy are age-related neurodegenerative disorders characterized by progressive accumulation of α-synuclein (α-syn) and jointly termed synucleinopathies. Currently, no disease-modifying treatments are available for these disorders. Previous preclinical studies demonstrate that active and passive immunizations targeting α-syn partially ameliorate behavioral deficits and α-syn accumulation; however, it is unknown whether combining humoral and cellular immunization might act synergistically to reduce inflammation and improve microglial-mediated α-syn clearance. Since combined delivery of antigen plus rapamycin (RAP) in nanoparticles is known to induce antigen-specific regulatory T cells (Tregs), we adapted this approach to α-syn using the antigen-presenting cell-targeting glucan microparticle (GP) vaccine delivery system. PDGF-α-syn transgenic (tg) male and female mice were immunized with GP-alone, GP-α-syn (active humoral immunization), GP+RAP, or GP+RAP/α-syn (combined active humoral and Treg) and analyzed using neuropathological and biochemical markers. Active immunization resulted in higher serological total IgG, IgG1, and IgG2a anti-α-syn levels. Compared with mice immunized with GP-alone or GP-α-syn, mice vaccinated with GP+RAP or GP+RAP/α-syn displayed increased numbers of CD25-, FoxP3-, and CD4-positive cells in the CNS. GP-α-syn or GP+RAP/α-syn immunizations resulted in a 30-45% reduction in α-syn accumulation, neuroinflammation, and neurodegeneration. Mice immunized with GP+RAP/α-syn further rescued neurons and reduced neuroinflammation. Levels of TGF-ß1 were increased with GP+RAP/α-syn immunization, while levels of TNF-α and IL-6 were reduced. We conclude that the observed effects of GP+RAP/α-syn immunization support the hypothesis that cellular immunization may enhance the effects of active immunotherapy for the treatment of synucleinopathies.SIGNIFICANCE STATEMENT We show that a novel vaccination modality combining an antigen-presenting cell-targeting glucan particle (GP) vaccine delivery system with encapsulated antigen (α-synuclein) + rapamycin (RAP) induced both strong anti-α-synuclein antibody titers and regulatory T cells (Tregs). This vaccine, collectively termed GP+RAP/α-syn, is capable of triggering neuroprotective Treg responses in synucleinopathy models, and the combined vaccine is more effective than the humoral or cellular immunization alone. Together, these results support the further development of this multifunctional vaccine approach for the treatment of synucleinopathies, such as Parkinson's disease, dementia with Lewy bodies, and multiple systems atrophy.


Asunto(s)
Enfermedades Neurodegenerativas/inmunología , Linfocitos T Reguladores/inmunología , Vacunación/métodos , alfa-Sinucleína/inmunología , Animales , Femenino , Glucanos/administración & dosificación , Glucanos/inmunología , Humanos , Inmunidad Celular/inmunología , Inmunidad Humoral/inmunología , Inmunosupresores/administración & dosificación , Masculino , Ratones , Ratones Transgénicos , Nanopartículas , Sirolimus/administración & dosificación , alfa-Sinucleína/administración & dosificación
18.
Neurobiol Dis ; 104: 85-96, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28476636

RESUMEN

Disorders with progressive accumulation of α-synuclein (α-syn) are a common cause of dementia and parkinsonism in the aging population. Accumulation and propagation of α-syn play a role in the pathogenesis of these disorders. Previous studies have shown that immunization with antibodies that recognize C-terminus of α-syn reduces the intra-neuronal accumulation of α-syn and related deficits in transgenic models of synucleinopathy. These studies employed antibodies that recognize epitopes within monomeric and aggregated α-syn that were generated through active immunization or administered via passive immunization. However, it is possible that more specific effects might be achieved with antibodies recognizing selective species of the α-syn aggregates. In this respect we recently developed antibodies that differentially recognized various oligomers (Syn-O1, -O2, and -O4) and fibrilar (Syn-F1 and -F2) forms of α-syn. For this purpose wild-type α-syn transgenic (line 61) mice were immunized with these 5 different antibodies and neuropathologically and biochemically analyzed to determine which was most effective at reducing α-syn accumulation and related deficits. We found that Syn-O1, -O4 and -F1 antibodies were most effective at reducing accumulation of α-syn oligomers in multiple brain regions and at preventing neurodegeneration. Together this study supports the notion that selective antibodies against α-syn might be suitable for development new treatments for synucleinopathies such as PD and DLB.


Asunto(s)
Demencia/terapia , Inmunoterapia/métodos , Trastornos Parkinsonianos/terapia , alfa-Sinucleína/inmunología , alfa-Sinucleína/metabolismo , Análisis de Varianza , Animales , Anticuerpos/uso terapéutico , Proteínas de Unión al Calcio/metabolismo , Ciclo Celular/genética , Línea Celular Tumoral , Demencia/genética , Demencia/inmunología , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Conducta Exploratoria/fisiología , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Ratones , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Microscopía Confocal , Neuroblastoma/patología , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/inmunología , Sinaptofisina/metabolismo , alfa-Sinucleína/genética
19.
J Neurovirol ; 23(2): 290-303, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28105557

RESUMEN

Despite the success of antiretroviral therapies to control systemic HIV-1 infection, the prevalence of HIV-associated neurocognitive disorders (HANDs) has not decreased among aging patients with HIV. Autophagy pathway alterations, triggered by HIV-1 proteins including gp120, Tat, and Nef, might contribute to the neurodegenerative process in aging patients with HAND. Although no treatments are currently available to manage HAND, we have previously shown that sunitinib, an anticancer drug that blocks receptor tyrosine-kinase and cyclin kinase pathways, might be of interest. Studies in cancer models suggest that sunitinib might also modulate autophagy, which is dysregulated in our models of Tat-induced neurotoxicity. We evaluated the efficacy of sunitinib to promote autophagy in the CNS and ameliorate neurodegeneration using LC3-GFP-expressing neuronal cells challenged with low concentrations of Tat and using inducible Tat transgenic mice. In neuronal cultures challenged with low levels of Tat, sunitinib increased markers of autophagy such as LC3-II and reduced p62 accumulation in a dose-dependent manner. In vivo, sunitinib treatment restored LC3-II, p62, and endophilin B1 (EndoB1) levels in doxycycline-induced Tat transgenic mice. Moreover, in these animals, sunitinib reduced the hyperactivation of CDK5, tau hyperphosphorylation, and p35 cleavage to p25. Restoration of CDK5 and autophagy were associated with reduced neurodegeneration and behavioral alterations. Alterations in autophagy in the Tat tg mice were associated with reduced levels of a CDK5 substrate, EndoB1, and levels of total EndoB1 were normalized by sunitinib treatment. We conclude that sunitinib might ameliorate Tat-mediated autophagy alterations and may decrease neurodegeneration in aging patients with HAND.


Asunto(s)
Antineoplásicos/farmacología , Disfunción Cognitiva/tratamiento farmacológico , Infecciones por VIH/tratamiento farmacológico , Indoles/farmacología , Pirroles/farmacología , Transgenes , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , Aciltransferasas/genética , Aciltransferasas/metabolismo , Animales , Autofagia/efectos de los fármacos , Autofagia/genética , Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/genética , Disfunción Cognitiva/virología , Quinasa 5 Dependiente de la Ciclina/genética , Quinasa 5 Dependiente de la Ciclina/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Regulación de la Expresión Génica , Infecciones por VIH/complicaciones , Infecciones por VIH/genética , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , VIH-1/genética , VIH-1/metabolismo , Humanos , Ratones , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Neuronas/virología , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Transducción de Señal , Sunitinib , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA