Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Cell Rep ; 43(7): 114384, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38970790

RESUMEN

Microbial plant pathogens deploy amphipathic cyclic lipopeptides to reduce surface tension in their environment. While plants can detect these molecules to activate cellular stress responses, the role of these lipopeptides or associated host responses in pathogenesis are not fully clear. The gramillin cyclic lipopeptide is produced by the Fusarium graminearum fungus and is a virulence factor and toxin in maize. Here, we show that gramillin promotes virulence and necrosis in both monocots and dicots by disrupting ion balance across membranes. Gramillin is a cation-conducting ionophore and causes plasma membrane depolarization. This disruption triggers cellular signaling, including a burst of reactive oxygen species (ROS), transcriptional reprogramming, and callose production. Gramillin-induced ROS depends on expression of host ILK1 and RBOHD genes, which promote fungal induction of virulence genes during infection and host susceptibility. We conclude that gramillin's ionophore activity targets plant membranes to coordinate attack by the F. graminearum fungus.


Asunto(s)
Membrana Celular , Fusarium , Lipopéptidos , Enfermedades de las Plantas , Fusarium/patogenicidad , Fusarium/metabolismo , Lipopéptidos/farmacología , Lipopéptidos/metabolismo , Virulencia , Membrana Celular/metabolismo , Enfermedades de las Plantas/microbiología , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Zea mays/microbiología
2.
Plant Biotechnol J ; 22(8): 2248-2266, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38516995

RESUMEN

The need for therapeutics to treat a plethora of medical conditions and diseases is on the rise and the demand for alternative approaches to mammalian-based production systems is increasing. Plant-based strategies provide a safe and effective alternative to produce biological drugs but have yet to enter mainstream manufacturing at a competitive level. Limitations associated with batch consistency and target protein production levels are present; however, strategies to overcome these challenges are underway. In this study, we apply state-of-the-art mass spectrometry-based proteomics to define proteome remodelling of the plant following agroinfiltration with bacteria grown under shake flask or bioreactor conditions. We observed distinct signatures of bacterial protein production corresponding to the different growth conditions that directly influence the plant defence responses and target protein production on a temporal axis. Our integration of proteomic profiling with small molecule detection and quantification reveals the fluctuation of secondary metabolite production over time to provide new insight into the complexities of dual system modulation in molecular pharming. Our findings suggest that bioreactor bacterial growth may promote evasion of early plant defence responses towards Agrobacterium tumefaciens (updated nomenclature to Rhizobium radiobacter). Furthermore, we uncover and explore specific targets for genetic manipulation to suppress host defences and increase recombinant protein production in molecular pharming.


Asunto(s)
Agrobacterium tumefaciens , Reactores Biológicos , Nicotiana , Proteómica , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/microbiología , Nicotiana/crecimiento & desarrollo , Reactores Biológicos/microbiología , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Agricultura Molecular/métodos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteoma/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
J Agric Food Chem ; 72(8): 3949-3957, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38375818

RESUMEN

Fusarium poae is commonly detected in field surveys of Fusarium head blight (FHB) of cereal crops and can produce a range of trichothecene mycotoxins. Although experimentally validated reports of F. poae strains producing T-2/HT-2 trichothecenes are rare, F. poae is frequently generalized in the literature as a producer of T-2/HT-2 toxins due to a single study from 2004 in which T-2/HT-2 toxins were detected at low levels from six out of forty-nine F. poae strains examined. To validate/substantiate the observations reported from the 2004 study, the producing strains were acquired and phylogenetically confirmed to be correctly assigned as F. poae; however, no evidence of T-2/HT-2 toxin production was observed from axenic cultures. Moreover, no evidence for a TRI16 ortholog, encoding a key acyltransferase shown to be necessary for T-2 toxin production in other Fusarium species, was observed in any of the de novo assembled genomes of the F. poae strains. Our findings corroborate multiple field-based and in vitro studies on FHB-associated Fusarium populations which also do not support the production of T-2/HT-2 toxins with F. poae and therefore conclude that F. poae should not be generalized as a T-2/HT-2 toxin producing species of Fusarium.


Asunto(s)
Fusarium , Micotoxinas , Toxina T-2/análogos & derivados , Fusarium/genética , Micotoxinas/análisis , Grano Comestible/química
4.
Microbiol Resour Announc ; 12(10): e0023423, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37732799

RESUMEN

The whole genomes of three Claviceps purpurea strains were sequenced using Oxford Nanopore Technologies' MinION and assembled into complete, chromosome-level assemblies. The C. purpurea genome consists of eight conserved chromosomes, with evidence of inter-chromosomal structural rearrangements between strains.

5.
J Fungi (Basel) ; 9(7)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37504684

RESUMEN

Fusarium graminearum is a causal organism of Fusarium head blight in cereals and maize. Although a few secondary metabolites produced by F. graminearum are considered disease virulence factors, many molecular products of biosynthetic gene clusters expressed by F. graminearum during infection and their associated role in the disease are unknown. In particular, the predicted meroterpenoid products of the biosynthetic gene cluster historically designated as "C16" are likely associated with pathogenicity. Presented here are the results of CRISPR-Cas9 gene-editing experiments disrupting the polyketide synthase and terpene synthase genes associated with the C16 biosynthetic gene cluster in F. graminearum. Culture medium screening experiments using transformant strains were profiled by UHPLC-HRMS and targeted MS2 experiments to confirm the associated secondary metabolite products of the C16 biosynthetic gene cluster as the decalin-containing diterpenoid pyrones, FDDP-D and FDDP-E. Both decalin-containing diterpenoid pyrones were confirmed to be produced in wheat heads challenged with F. graminearum in growth chamber trials. The extent to which the F. graminearum C16 biosynthetic gene cluster is dispersed within the genus Fusarium is discussed along with a proposed role of the FDDPs as pathogen virulence factors.

6.
J Fungi (Basel) ; 9(7)2023 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-37504712

RESUMEN

Mycotoxins, derived from toxigenic fungi such as Fusarium, Aspergillus, and Penicillium species have impacted the human food chain for thousands of years. Deoxynivalenol (DON), is a tetracyclic sesquiterpenoid type B trichothecene mycotoxin predominantly produced by F. culmorum and F. graminearum during the infection of corn, wheat, oats, barley, and rice. Glycosylation of DON is a protective detoxification mechanism employed by plants. More recently, DON glycosylating activity has also been detected in fungal microparasitic (biocontrol) fungal organisms. Here we follow up on the reported conversion of 15-acetyl-DON (15-ADON) into 15-ADON-3-O-glycoside (15-ADON-3G) in Clonostachys rosea. Based on the hypothesis that the reaction is likely being carried out by a uridine diphosphate glycosyl transferase (UDP-GTase), we applied a protein structural comparison strategy, leveraging the availability of the crystal structure of rice Os70 to identify a subset of potential C. rosea UDP-GTases that might have activity against 15-ADON. Using CRISPR/Cas9 technology, we knocked out several of the selected UDP-GTases in the C. rosea strain ACM941. Evaluation of the impact of knockouts on the production of 15-ADON-3G in confrontation assays with F. graminearum revealed multiple UDP-GTase enzymes, each contributing partial activities. The relationship between these positive hits and other UDP-GTases in fungal and plant species is discussed.

7.
Front Mol Biosci ; 9: 1038299, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36504718

RESUMEN

Alternaria section Alternaria is comprised of many species that infect a broad diversity of important crop plants and cause post-harvest spoilage. Alternaria section Alternaria species, such as A. alternata and A. arborescens, are prolific producers of secondary metabolites that act as virulence factors of disease and are mycotoxins that accumulate in infected tissues-metabolites that can vary in their spectrum of production between individuals from the same fungal species. Untargeted metabolomics profiling of secondary metabolite production using mass spectrometry is an effective means to detect phenotypic anomalies in secondary metabolism within a species. Secondary metabolite phenotypes from 36 Alternaria section Alternaria isolates were constructed to observe frequency of production patterns. A clear and unique mass feature pattern was observed for three of the strains that were linked with the production of the dehydrocurvularin family of toxins and associated detoxification products. Examination of corresponding genomes revealed the presence of the dehydrocurvularin biosynthesis gene cluster associated with a sub-telomeric accessory region. A comparison of sequence similarity and occurrences of the dehydrocurvularin biosynthetic gene cluster within Pleosporalean fungi is presented and discussed.

8.
Methods Mol Biol ; 2456: 349-365, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35612754

RESUMEN

This chapter describes protocols for the development of consensus chemical phenotypes or "metabolomes" of fungal populations using ultra-high pressure liquid chromatography coupled to high resolution mass spectrometry (UPLC-HRMS). Isolates are cultured using multiple media conditions to elicit the expression of diverse secondary metabolite biosynthetic gene clusters. The mycelium and spent culture media are extracted using organic solvents and profiled by ultra-high pressure chromatography coupled with a high resolution Thermo Orbitrap XL mass spectrometer with the ability to trap and fragment ions to general MS2 spectra. MS data preprocessing is explained and illustrated using the freely available software MZMine 2. Through data processing, binary matrices of mass features can be generated and then combined into a consensus secondary metabolite phenotype of all isolates grown in all media conditions. The production of consensus chemical phenotypes is useful for screening large fungal populations (both inter and intra-species populations) for isolates potentially expressing novel secondary metabolites or analogs of known secondary metabolites.


Asunto(s)
Metaboloma , Metabolómica , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas , Metabolómica/métodos , Programas Informáticos
9.
Plant Cell ; 34(8): 2925-2947, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35532172

RESUMEN

Salicinoids are salicyl alcohol-containing phenolic glycosides with strong antiherbivore effects found only in poplars and willows. Their biosynthesis is poorly understood, but recently a UDP-dependent glycosyltransferase, UGT71L1, was shown to be required for salicinoid biosynthesis in poplar tissue cultures. UGT71L1 specifically glycosylates salicyl benzoate, a proposed salicinoid intermediate. Here, we analyzed transgenic CRISPR/Cas9-generated UGT71L1 knockout plants. Metabolomic analyses revealed substantial reductions in the major salicinoids, confirming the central role of the enzyme in salicinoid biosynthesis. Correspondingly, UGT71L1 knockouts were preferred to wild-type by white-marked tussock moth (Orgyia leucostigma) larvae in bioassays. Greenhouse-grown knockout plants showed substantial growth alterations, with decreased internode length and smaller serrated leaves. Reinserting a functional UGT71L1 gene in a transgenic rescue experiment demonstrated that these effects were due only to the loss of UGT71L1. The knockouts contained elevated salicylate (SA) and jasmonate (JA) concentrations, and also had enhanced expression of SA- and JA-related genes. SA is predicted to be released by UGT71L1 disruption, if salicyl salicylate is a pathway intermediate and UGT71L1 substrate. This idea was supported by showing that salicyl salicylate can be glucosylated by recombinant UGT71L1, providing a potential link of salicinoid metabolism to SA and growth impacts. Connecting this pathway with growth could imply that salicinoids are under additional evolutionary constraints beyond selective pressure by herbivores.


Asunto(s)
Mariposas Nocturnas , Populus , Animales , Sistemas CRISPR-Cas/genética , Ciclopentanos/metabolismo , Herbivoria , Mariposas Nocturnas/genética , Mariposas Nocturnas/metabolismo , Oxilipinas/metabolismo , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Populus/genética , Populus/metabolismo , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacología
10.
Sci Total Environ ; 828: 154433, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35276180

RESUMEN

Soil organic matter (SOM) is the largest carbon pool in terrestrial ecosystems and underpins the health and productivity of soil. Accurate characterization of its chemical composition will improve our understanding of biotic and abiotic processes regulating its stabilization. Our purpose in this study was to estimate the loss of SOM by microbial and exoenzymatic activity that might occur when soil is extracted for analysis of representative low molecular weight mass features using untargeted metabolomics. Two mined clays (kaolinite, montmorillonite) and three diverse soils (varying in texture, specific surface area and cation exchange capacity) were used to assess the extraction efficiency and loss of three enzymatic activity indicators (2,6-dichloroindophenol sodium salt hydrate [DCIP], 4-methylumbelliferyl phosphate [MUBph] and 3,4-dihydroxy-L-phenylalanine [LDOPA]) during extraction with two different solvents (water and methanol). Losses of the indicators were attributed to extraction method (ultrasonication, shaking, or shaking following chloroform fumigation), physical properties associated with the soil/clay type, and microbial activity. Soil/clay type strongly influenced indicator recovery and hence, SOM recovery. Choice of extraction method strongly influenced the composition and recovery of representative SOM mass features, while the choice of solvent determined whether the soil type or extraction method had a greater influence of compositional differences in the SOM mass features extracted. Extraction following chloroform fumigation had the greatest loss of the indicators, due to enzymatic activity and/or adsorption onto the soil matrix. Minimal variation in composition and loss of SOM mass features occurred during extraction by shaking for the soils tested; we therefore recommend it as the method of choice for untargeted SOM extraction studies.


Asunto(s)
Ecosistema , Suelo , Cloroformo , Arcilla , Metabolómica , Suelo/química , Solventes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA