Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nat Commun ; 15(1): 8549, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39362880

RESUMEN

The role of rare non-coding variation in complex human phenotypes is still largely unknown. To elucidate the impact of rare variants in regulatory elements, we performed a whole-genome sequencing association analysis for height using 333,100 individuals from three datasets: UK Biobank (N = 200,003), TOPMed (N = 87,652) and All of Us (N = 45,445). We performed rare ( < 0.1% minor-allele-frequency) single-variant and aggregate testing of non-coding variants in regulatory regions based on proximal-regulatory, intergenic-regulatory and deep-intronic annotation. We observed 29 independent variants associated with height at P < 6 × 10 - 10 after conditioning on previously reported variants, with effect sizes ranging from -7cm to +4.7 cm. We also identified and replicated non-coding aggregate-based associations proximal to HMGA1 containing variants associated with a 5 cm taller height and of highly-conserved variants in MIR497HG on chromosome 17. We have developed an approach for identifying non-coding rare variants in regulatory regions with large effects from whole-genome sequencing data associated with complex traits.


Asunto(s)
Estatura , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma , Humanos , Estatura/genética , Masculino , Femenino , Frecuencia de los Genes , Genoma Humano , Variación Genética , Fenotipo
2.
Nature ; 633(8030): 608-614, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39261734

RESUMEN

Human genetic studies of common variants have provided substantial insight into the biological mechanisms that govern ovarian ageing1. Here we report analyses of rare protein-coding variants in 106,973 women from the UK Biobank study, implicating genes with effects around five times larger than previously found for common variants (ETAA1, ZNF518A, PNPLA8, PALB2 and SAMHD1). The SAMHD1 association reinforces the link between ovarian ageing and cancer susceptibility1, with damaging germline variants being associated with extended reproductive lifespan and increased all-cause cancer risk in both men and women. Protein-truncating variants in ZNF518A are associated with shorter reproductive lifespan-that is, earlier age at menopause (by 5.61 years) and later age at menarche (by 0.56 years). Finally, using 8,089 sequenced trios from the 100,000 Genomes Project (100kGP), we observe that common genetic variants associated with earlier ovarian ageing associate with an increased rate of maternally derived de novo mutations. Although we were unable to replicate the finding in independent samples from the deCODE study, it is consistent with the expected role of DNA damage response genes in maintaining the genetic integrity of germ cells. This study provides evidence of genetic links between age of menopause and cancer risk.


Asunto(s)
Envejecimiento , Predisposición Genética a la Enfermedad , Menopausia , Tasa de Mutación , Neoplasias , Ovario , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Envejecimiento/genética , Envejecimiento/patología , Daño del ADN/genética , Fertilidad/genética , Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Genoma Humano/genética , Mutación de Línea Germinal/genética , Menarquia/genética , Menopausia/genética , Neoplasias/genética , Ovario/metabolismo , Ovario/patología , Factores de Tiempo , Biobanco del Reino Unido , Reino Unido/epidemiología
3.
BMC Genomics ; 25(1): 553, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831310

RESUMEN

Development of the human pancreas requires the precise temporal control of gene expression via epigenetic mechanisms and the binding of key transcription factors. We quantified genome-wide patterns of DNA methylation in human fetal pancreatic samples from donors aged 6 to 21 post-conception weeks. We found dramatic changes in DNA methylation across pancreas development, with > 21% of sites characterized as developmental differentially methylated positions (dDMPs) including many annotated to genes associated with monogenic diabetes. An analysis of DNA methylation in postnatal pancreas tissue showed that the dramatic temporal changes in DNA methylation occurring in the developing pancreas are largely limited to the prenatal period. Significant differences in DNA methylation were observed between males and females at a number of autosomal sites, with a small proportion of sites showing sex-specific DNA methylation trajectories across pancreas development. Pancreas dDMPs were not distributed equally across the genome and were depleted in regulatory domains characterized by open chromatin and the binding of known pancreatic development transcription factors. Finally, we compared our pancreas dDMPs to previous findings from the human brain, identifying evidence for tissue-specific developmental changes in DNA methylation. This study represents the first systematic exploration of DNA methylation patterns during human fetal pancreas development and confirms the prenatal period as a time of major epigenomic plasticity.


Asunto(s)
Metilación de ADN , Páncreas , Humanos , Páncreas/metabolismo , Páncreas/embriología , Femenino , Masculino , Regulación del Desarrollo de la Expresión Génica , Islas de CpG , Epigénesis Genética , Genoma Humano , Feto/metabolismo
4.
Eur J Hum Genet ; 32(7): 813-818, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38605124

RESUMEN

Persistent congenital hyperinsulinism (HI) is a rare genetically heterogeneous condition characterised by dysregulated insulin secretion leading to life-threatening hypoglycaemia. For up to 50% of affected individuals screening of the known HI genes does not identify a disease-causing variant. Large deletions have previously been used to identify novel regulatory regions causing HI. Here, we used genome sequencing to search for novel large (>1 Mb) deletions in 180 probands with HI of unknown cause and replicated our findings in a large cohort of 883 genetically unsolved individuals with HI using off-target copy number variant calling from targeted gene panels. We identified overlapping heterozygous deletions in five individuals (range 3-8 Mb) spanning chromosome 20p11.2. The pancreatic beta-cell transcription factor gene, FOXA2, a known cause of HI was deleted in two of the five individuals. In the remaining three, we found a minimal deleted region of 2.4 Mb adjacent to FOXA2 that encompasses multiple non-coding regulatory elements that are in conformational contact with FOXA2. Our data suggests that the deletions in these three children may cause disease through the dysregulation of FOXA2 expression. These findings provide new insights into the regulation of FOXA2 in the beta-cell and confirm an aetiological role for chromosome 20p11.2 deletions in syndromic HI.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 20 , Hiperinsulinismo Congénito , Factor Nuclear 3-beta del Hepatocito , Humanos , Factor Nuclear 3-beta del Hepatocito/genética , Factor Nuclear 3-beta del Hepatocito/metabolismo , Hiperinsulinismo Congénito/genética , Hiperinsulinismo Congénito/patología , Cromosomas Humanos Par 20/genética , Femenino , Masculino , Secuencias Reguladoras de Ácidos Nucleicos
5.
Nat Genet ; 55(12): 2075-2081, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37973953

RESUMEN

Identifying genes linked to extreme phenotypes in humans has the potential to highlight biological processes not shared with all other mammals. Here, we report the identification of homozygous loss-of-function variants in the primate-specific gene ZNF808 as a cause of pancreatic agenesis. ZNF808 is a member of the KRAB zinc finger protein family, a large and rapidly evolving group of epigenetic silencers which target transposable elements. We show that loss of ZNF808 in vitro results in aberrant activation of regulatory potential contained in the primate-specific transposable elements it represses during early pancreas development. This leads to inappropriate specification of cell fate with induction of genes associated with liver identity. Our results highlight the essential role of ZNF808 in pancreatic development in humans and the contribution of primate-specific regions of the human genome to congenital developmental disease.


Asunto(s)
Anomalías Congénitas , Elementos Transponibles de ADN , Proteínas de Unión al ADN , Páncreas , Animales , Humanos , Diferenciación Celular , Genoma Humano , Primates/anomalías , Primates/genética , Proteínas de Unión al ADN/genética , Anomalías Congénitas/genética , Páncreas/anomalías
7.
Nat Commun ; 13(1): 6681, 2022 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-36335122

RESUMEN

Transitioning from pluripotency to differentiated cell fates is fundamental to both embryonic development and adult tissue homeostasis. Improving our understanding of this transition would facilitate our ability to manipulate pluripotent cells into tissues for therapeutic use. Here, we show that membrane voltage (Vm) regulates the exit from pluripotency and the onset of germ layer differentiation in the embryo, a process that affects both gastrulation and left-right patterning. By examining candidate genes of congenital heart disease and heterotaxy, we identify KCNH6, a member of the ether-a-go-go class of potassium channels that hyperpolarizes the Vm and thus limits the activation of voltage gated calcium channels, lowering intracellular calcium. In pluripotent embryonic cells, depletion of kcnh6 leads to membrane depolarization, elevation of intracellular calcium levels, and the maintenance of a pluripotent state at the expense of differentiation into ectodermal and myogenic lineages. Using high-resolution temporal transcriptome analysis, we identify the gene regulatory networks downstream of membrane depolarization and calcium signaling and discover that inhibition of the mTOR pathway transitions the pluripotent cell to a differentiated fate. By manipulating Vm using a suite of tools, we establish a bioelectric pathway that regulates pluripotency in vertebrates, including human embryonic stem cells.


Asunto(s)
Células Madre Pluripotentes , Animales , Humanos , Calcio/metabolismo , Potenciales de la Membrana , Diferenciación Celular/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Canales de Potasio Éter-A-Go-Go/metabolismo
8.
Nat Genet ; 54(11): 1615-1620, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36333503

RESUMEN

Gene expression is tightly regulated, with many genes exhibiting cell-specific silencing when their protein product would disrupt normal cellular function1. This silencing is largely controlled by non-coding elements, and their disruption might cause human disease2. We performed gene-agnostic screening of the non-coding regions to discover new molecular causes of congenital hyperinsulinism. This identified 14 non-coding de novo variants affecting a 42-bp conserved region encompassed by a regulatory element in intron 2 of the hexokinase 1 gene (HK1). HK1 is widely expressed across all tissues except in the liver and pancreatic beta cells and is thus termed a 'disallowed gene' in these specific tissues. We demonstrated that the variants result in a loss of repression of HK1 in pancreatic beta cells, thereby causing insulin secretion and congenital hyperinsulinism. Using epigenomic data accessed from public repositories, we demonstrated that these variants reside within a regulatory region that we determine to be critical for cell-specific silencing. Importantly, this has revealed a disease mechanism for non-coding variants that cause inappropriate expression of a disallowed gene.


Asunto(s)
Hiperinsulinismo Congénito , Células Secretoras de Insulina , Humanos , Hexoquinasa/genética , Hexoquinasa/metabolismo , Hiperinsulinismo Congénito/genética , Hiperinsulinismo Congénito/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética
9.
Nucleic Acids Res ; 50(13): 7367-7379, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35762231

RESUMEN

Histone H3 Lysine 9 (H3K9) methylation, a characteristic mark of heterochromatin, is progressively implemented during development to contribute to cell fate restriction as differentiation proceeds. Accordingly, in undifferentiated and pluripotent mouse Embryonic Stem (ES) cells the global levels of H3K9 methylation are rather low and increase only upon differentiation. How global H3K9 methylation levels are coupled with the loss of pluripotency remains largely unknown. Here, we identify SUV39H1, a major H3K9 di- and tri-methylase, as an indirect target of the pluripotency network of Transcription Factors (TFs). We find that pluripotency TFs, principally OCT4, activate the expression of Suv39h1as, an antisense long non-coding RNA to Suv39h1. In turn, Suv39h1as downregulates Suv39h1 transcription in cis via a mechanism involving the modulation of the chromatin status of the locus. The targeted deletion of the Suv39h1as promoter region triggers increased SUV39H1 expression and H3K9me2 and H3K9me3 levels, affecting all heterochromatic regions, particularly peri-centromeric major satellites and retrotransposons. This increase in heterochromatinization efficiency leads to accelerated and more efficient commitment into differentiation. We report, therefore, a simple genetic circuitry coupling the genetic control of pluripotency with the global efficiency of H3K9 methylation associated with a major cell fate restriction, the irreversible loss of pluripotency.


Asunto(s)
Histonas , Metiltransferasas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , ARN Largo no Codificante , Proteínas Represoras/metabolismo , Animales , Cromatina , Código de Histonas , Histonas/genética , Histonas/metabolismo , Metilación , Metiltransferasas/genética , Ratones , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas Represoras/genética
10.
Development ; 148(17)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34397088

RESUMEN

The maintenance of pluripotency in mouse embryonic stem cells (ESCs) is governed by the action of an interconnected network of transcription factors. Among them, only Oct4 and Sox2 have been shown to be strictly required for the self-renewal of ESCs and pluripotency, particularly in culture conditions in which differentiation cues are chemically inhibited. Here, we report that the conjunct activity of two orphan nuclear receptors, Esrrb and Nr5a2, parallels the importance of that of Oct4 and Sox2 in naïve mouse ESCs. By occupying a large common set of regulatory elements, these two factors control the binding of Oct4, Sox2 and Nanog to DNA. Consequently, in their absence the pluripotency network collapses and the transcriptome is substantially deregulated, leading to the differentiation of ESCs. Altogether, this work identifies orphan nuclear receptors, previously thought to be performing supportive functions, as a set of core regulators of naïve pluripotency.


Asunto(s)
Células Madre Embrionarias de Ratones/citología , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Estrógenos/metabolismo , Animales , Diferenciación Celular , Autorrenovación de las Células , Redes Reguladoras de Genes , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Proteína Homeótica Nanog/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Unión Proteica , Receptores de Estrógenos/genética , Factores de Transcripción SOXB1/metabolismo
11.
Transcription ; 11(5): 236-240, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33054514

RESUMEN

Chromatin accessibility is generally perceived as a common property of active regulatory elements where transcription factors are recruited via DNA-specific interactions and other physico-chemical properties to regulate gene transcription. Recent work in the context of mitosis provides less trivial and potentially more interesting relationships than previously anticipated.


Asunto(s)
Cromatina/genética , Mitosis/genética , Factores de Transcripción/genética , Animales , Sitios de Unión/genética , Cromatina/metabolismo , Humanos , Factores de Transcripción/metabolismo
12.
Cell Death Differ ; 27(10): 2872-2887, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32355182

RESUMEN

Ribosome biogenesis inhibition causes cell cycle arrest and apoptosis through the activation of tumor suppressor-dependent surveillance pathways. These responses are exacerbated in cancer cells, suggesting that targeting ribosome synthesis may be beneficial to patients. Here, we characterize the effect of the loss-of-function of Notchless (Nle), an essential actor of ribosome biogenesis, on the intestinal epithelium undergoing tumor initiation due to acute Apc loss-of-function. We show that ribosome biogenesis dysfunction strongly alleviates Wnt-driven tumor initiation by restoring cell cycle exit and differentiation in Apc-deficient progenitors. Conversely Wnt hyperactivation attenuates the cellular responses to surveillance pathways activation induced by ribosome biogenesis dysfunction, as proliferation was maintained at control-like levels in the stem cells and progenitors of double mutants. Thus, our data indicate that, while ribosome biogenesis inhibition efficiently reduces cancer cell proliferation in the intestinal epithelium, enhanced resistance of Apc-deficient stem and progenitor cells to ribosome biogenesis defects may be an important concern when using a therapeutic strategy targeting ribosome production for the treatment of Wnt-dependent tumorigenesis.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/fisiología , Transformación Celular Neoplásica , Mucosa Intestinal , Proteínas de la Membrana/fisiología , Ribosomas/metabolismo , Vía de Señalización Wnt , Animales , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Ratones , Ratones Endogámicos C57BL , Biogénesis de Organelos
13.
Vaccines (Basel) ; 7(4)2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31756967

RESUMEN

Dengue virus is the most important arbovirus impacting global human health, with an estimated 390 million infections annually, and over half the world's population at risk of infection. While significant efforts have been made to develop effective vaccines to mitigate this threat, the task has proven extremely challenging, with new approaches continually being sought. The majority of protective, neutralizing antibodies induced during infection are targeted by the envelope (E) protein, making it an ideal candidate for a subunit vaccine approach. Using truncated, recombinant, secreted E proteins (sE) of all 4 dengue virus serotypes, we have assessed their immunogenicity and protective efficacy in mice, with or without Quil-A as an adjuvant, and delivered via micropatch array (MPA) to the skin in comparison with more traditional routes of immunization. The micropatch contains an ultra-high density array (21,000/cm2) of 110 µm microprojections. Mice received 3 doses of 1 µg (nanopatch, intradermal, subcutaneous, or intra muscular injection) or 10 µg (intradermal, subcutaneous, or intra muscular injection) of tetravalent sE spaced 4 weeks apart. When adjuvanted with Quil-A, tetravalent sE vaccination delivered via MPA resulted in earlier induction of virus-neutralizing IgG antibodies for all four serotypes when compared with all of the other vaccination routes. Using the infectious dengue virus AG129 mouse infectious dengue model, these neutralizing antibodies protected all mice from lethal dengue virus type 2 D220 challenge, with protected animals showing no signs of disease or circulating virus. If these results can be translated to humans, MPA-delivered sE represents a promising approach to dengue virus vaccination.

14.
Elife ; 82019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31599722

RESUMEN

The access of Transcription Factors (TFs) to their cognate DNA binding motifs requires a precise control over nucleosome positioning. This is especially important following DNA replication and during mitosis, both resulting in profound changes in nucleosome organization over TF binding regions. Using mouse Embryonic Stem (ES) cells, we show that the TF CTCF displaces nucleosomes from its binding site and locally organizes large and phased nucleosomal arrays, not only in interphase steady-state but also immediately after replication and during mitosis. Correlative analyses suggest this is associated with fast gene reactivation following replication and mitosis. While regions bound by other TFs (Oct4/Sox2), display major rearrangement, the post-replication and mitotic nucleosome positioning activity of CTCF is not unique: Esrrb binding regions are also characterized by persistent nucleosome positioning. Therefore, selected TFs such as CTCF and Esrrb act as resilient TFs governing the inheritance of nucleosome positioning at regulatory regions throughout the cell-cycle.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Replicación del ADN , Células Madre Embrionarias/fisiología , Mitosis , Nucleosomas/metabolismo , Animales , Células Cultivadas , Regulación de la Expresión Génica , Ratones , Activación Transcripcional
15.
Nat Commun ; 10(1): 4269, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31537794

RESUMEN

Embryonic development yields many different cell types in response to just a few families of inductive signals. The property of signal-receiving cells that determines how they respond to inductive signals is known as competence, and it differs in different cell types. Here, we explore the ways in which maternal factors modify chromatin to specify initial competence in the frog Xenopus tropicalis. We identify early-engaged regulatory DNA sequences, and infer from them critical activators of the zygotic genome. Of these, we show that the pioneering activity of the maternal pluripotency factors Pou5f3 and Sox3 determines competence for germ layer formation by extensively remodelling compacted chromatin before the onset of inductive signalling. This remodelling includes the opening and marking of thousands of regulatory elements, extensive chromatin looping, and the co-recruitment of signal-mediating transcription factors. Our work identifies significant developmental principles that inform our understanding of how pluripotent stem cells interpret inductive signals.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Proteínas de Homeodominio/genética , Células Madre Pluripotentes/citología , Factores de Transcripción SOXB1/genética , Factores de Transcripción/genética , Proteínas de Xenopus/genética , Xenopus/embriología , Animales , Diferenciación Celular/genética , Cromatina/metabolismo , Desarrollo Embrionario/genética , Células Madre Embrionarias/citología , Regulación del Desarrollo de la Expresión Génica/genética , Estratos Germinativos/crecimiento & desarrollo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Xenopus/genética
16.
iScience ; 16: 485-498, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31229896

RESUMEN

One of the earliest and most significant events in embryonic development is zygotic genome activation (ZGA). In several species, bulk transcription begins at the midblastula transition (MBT) when, after a certain number of cleavages, the embryo attains a particular nuclear-to-cytoplasmic (N/C) ratio, maternal repressors become sufficiently diluted, and the cell cycle slows down. Here we resolve the frog ZGA in time and space by profiling RNA polymerase II (RNAPII) engagement and its transcriptional readout. We detect a gradual increase in both the quantity and the length of RNAPII elongation before the MBT, revealing that >1,000 zygotic genes disregard the N/C timer for their activation and that the sizes of newly transcribed genes are not necessarily constrained by cell cycle duration. We also find that Wnt, Nodal, and BMP signaling together generate most of the spatiotemporal dynamics of regional ZGA, directing the formation of orthogonal body axes and proportionate germ layers.

18.
Cold Spring Harb Protoc ; 2019(6)2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-30952685

RESUMEN

Here we consider RNA-Seq, used to measure global gene expression through RNA fragmentation, capture, sequencing, and subsequent computational analysis. Xenopus, with its large number of RNA-rich, synchronously developing, and accessible embryos, is an excellent model organism for exploiting the power of high-throughput sequencing to understand gene expression during development. Here we present a standard RNA-Seq protocol for performing two-state differential gene expression analysis (between groups of replicates of control and treated embryos) using Illumina sequencing. Samples contain multiple whole embryos, and polyadenylated mRNA is measured under relative normalization. The protocol is divided into two parts: wet-lab processes to prepare samples for sequencing and downstream computational analysis including quality control, quantification of gene expression, and differential expression.


Asunto(s)
Perfilación de la Expresión Génica/métodos , RNA-Seq/métodos , Animales , Regulación del Desarrollo de la Expresión Génica , Biblioteca de Genes , Manejo de Especímenes , Xenopus/embriología
19.
Nat Commun ; 10(1): 1109, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30846691

RESUMEN

Transcription factor networks, together with histone modifications and signalling pathways, underlie the establishment and maintenance of gene regulatory architectures associated with the molecular identity of each cell type. However, how master transcription factors individually impact the epigenomic landscape and orchestrate the behaviour of regulatory networks under different environmental constraints is only partially understood. Here, we show that the transcription factor Nanog deploys multiple distinct mechanisms to enhance embryonic stem cell self-renewal. In the presence of LIF, which fosters self-renewal, Nanog rewires the pluripotency network by promoting chromatin accessibility and binding of other pluripotency factors to thousands of enhancers. In the absence of LIF, Nanog blocks differentiation by sustaining H3K27me3, a repressive histone mark, at developmental regulators. Among those, we show that the repression of Otx2 plays a preponderant role. Our results underscore the versatility of master transcription factors, such as Nanog, to globally influence gene regulation during developmental processes.


Asunto(s)
Autorrenovación de las Células/fisiología , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Proteína Homeótica Nanog/metabolismo , Animales , Línea Celular , Autorrenovación de las Células/genética , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Código de Histonas/genética , Factor Inhibidor de Leucemia/genética , Factor Inhibidor de Leucemia/metabolismo , Ratones , Proteína Homeótica Nanog/genética , Factores de Transcripción Otx/genética , Factores de Transcripción Otx/metabolismo
20.
Genome Res ; 29(2): 250-260, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30655337

RESUMEN

Mitotic bookmarking transcription factors (BFs) maintain the capacity to bind to their targets during mitosis, despite major rearrangements of the chromatin. While they were thought to propagate gene regulatory information through mitosis by statically occupying their DNA targets, it has recently become clear that BFs are highly dynamic in mitotic cells. This represents both a technical and a conceptual challenge to study and understand the function of BFs: First, formaldehyde has been suggested to be unable to efficiently capture these transient interactions, leading to profound contradictions in the literature; and second, if BFs are not permanently bound to their targets during mitosis, it becomes unclear how they convey regulatory information to daughter cells. Here, comparing formaldehyde to alternative fixatives we clarify the nature of the chromosomal association of previously proposed BFs in embryonic stem cells: While ESRRB can be considered as a canonical BF that binds at selected regulatory regions in mitosis, SOX2 and POU5F1 (also known as OCT4) establish DNA sequence-independent interactions with the mitotic chromosomes, either throughout the chromosomal arms (SOX2) or at pericentromeric regions (POU5F1). Moreover, we show that ordered nucleosomal arrays are retained during mitosis at ESRRB bookmarked sites, whereas regions losing transcription factor binding display a profound loss of order. By maintaining nucleosome positioning during mitosis, ESRRB might ensure the rapid post-mitotic re-establishment of functional regulatory complexes at selected enhancers and promoters. Our results provide a mechanistic framework that reconciles dynamic mitotic binding with the transmission of gene regulatory information across cell division.


Asunto(s)
Mitosis/genética , Nucleosomas/química , Factores de Transcripción/metabolismo , Animales , Células Cultivadas , Cromatina/metabolismo , Cromosomas de los Mamíferos , Fijadores , Formaldehído , Ratones , Receptores de Estrógenos/metabolismo , Succinimidas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA