Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Res Sq ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39149454

RESUMEN

On average, more than 5 million patients are admitted to intensive care units (ICUs) in the US, with mortality rates ranging from 10 to 29%. The acuity state of patients in the ICU can quickly change from stable to unstable, sometimes leading to life-threatening conditions. Early detection of deteriorating conditions can assist in more timely interventions and improved survival rates. While Artificial Intelligence (AI)-based models show potential for assessing acuity in a more granular and automated manner, they typically use mortality as a proxy of acuity in the ICU. Furthermore, these methods do not determine the acuity state of a patient (i.e., stable or unstable), the transition between acuity states, or the need for life-sustaining therapies. In this study, we propose APRICOT-M (Acuity Prediction in Intensive Care Unit-Mamba), a 1M-parameter state space-based neural network to predict acuity state, transitions, and the need for life-sustaining therapies in real-time among ICU patients. The model integrates ICU data in the preceding four hours (including vital signs, laboratory results, assessment scores, and medications) and patient characteristics (age, sex, race, and comorbidities) to predict the acuity outcomes in the next four hours. Our state space-based model can process sparse and irregularly sampled data without manual imputation, thus reducing the noise in input data and increasing inference speed. The model was trained on data from 107,473 patients (142,062 ICU admissions) from 55 hospitals between 2014-2017 and validated externally on data from 74,901 patients (101,356 ICU admissions) from 143 hospitals. Additionally, it was validated temporally on data from 12,927 patients (15,940 ICU admissions) from one hospital in 2018-2019 and prospectively on data from 215 patients (369 ICU admissions) from one hospital in 2021-2023. Three datasets were used for training and evaluation: the University of Florida Health (UFH) dataset, the electronic ICU Collaborative Research Database (eICU), and the Medical Information Mart for Intensive Care (MIMIC)-IV dataset. APRICOT-M significantly outperforms the baseline acuity assessment, Sequential Organ Failure Assessment (SOFA), for mortality prediction in both external (AUROC 0.95 CI: 0.94-0.95 compared to 0.78 CI: 0.78-0.79) and prospective (AUROC 0.99 CI: 0.97-1.00 compared to 0.80 CI: 0.65-0.92) cohorts, as well as for instability prediction (external AUROC 0.75 CI: 0.74-0.75 compared to 0.51 CI: 0.51-0.51, and prospective AUROC 0.69 CI: 0.64-0.74 compared to 0.53 CI: 0.50-0.57). This tool has the potential to help clinicians make timely interventions by predicting the transition between acuity states and decision-making on life-sustaining within the next four hours in the ICU.

2.
Ann Surg Open ; 5(2): e429, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38911666

RESUMEN

Objective: To determine whether certain patients are vulnerable to errant triage decisions immediately after major surgery and whether there are unique sociodemographic phenotypes within overtriaged and undertriaged cohorts. Background: In a fair system, overtriage of low-acuity patients to intensive care units (ICUs) and undertriage of high-acuity patients to general wards would affect all sociodemographic subgroups equally. Methods: This multicenter, longitudinal cohort study of hospital admissions immediately after major surgery compared hospital mortality and value of care (risk-adjusted mortality/total costs) across 4 cohorts: overtriage (N = 660), risk-matched overtriage controls admitted to general wards (N = 3077), undertriage (N = 2335), and risk-matched undertriage controls admitted to ICUs (N = 4774). K-means clustering identified sociodemographic phenotypes within overtriage and undertriage cohorts. Results: Compared with controls, overtriaged admissions had a predominance of male patients (56.2% vs 43.1%, P < 0.001) and commercial insurance (6.4% vs 2.5%, P < 0.001); undertriaged admissions had a predominance of Black patients (28.4% vs 24.4%, P < 0.001) and greater socioeconomic deprivation. Overtriage was associated with increased total direct costs [$16.2K ($11.4K-$23.5K) vs $14.1K ($9.1K-$20.7K), P < 0.001] and low value of care; undertriage was associated with increased hospital mortality (1.5% vs 0.7%, P = 0.002) and hospice care (2.2% vs 0.6%, P < 0.001) and low value of care. Unique sociodemographic phenotypes within both overtriage and undertriage cohorts had similar outcomes and value of care, suggesting that triage decisions, rather than patient characteristics, drive outcomes and value of care. Conclusions: Postoperative triage decisions should ensure equality across sociodemographic groups by anchoring triage decisions to objective patient acuity assessments, circumventing cognitive shortcuts and mitigating bias.

3.
Front Neurol ; 15: 1386728, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38784909

RESUMEN

Acuity assessments are vital for timely interventions and fair resource allocation in critical care settings. Conventional acuity scoring systems heavily depend on subjective patient assessments, leaving room for implicit bias and errors. These assessments are often manual, time-consuming, intermittent, and challenging to interpret accurately, especially for healthcare providers. This risk of bias and error is likely most pronounced in time-constrained and high-stakes environments, such as critical care settings. Furthermore, such scores do not incorporate other information, such as patients' mobility level, which can indicate recovery or deterioration in the intensive care unit (ICU), especially at a granular level. We hypothesized that wearable sensor data could assist in assessing patient acuity granularly, especially in conjunction with clinical data from electronic health records (EHR). In this prospective study, we evaluated the impact of integrating mobility data collected from wrist-worn accelerometers with clinical data obtained from EHR for estimating acuity. Accelerometry data were collected from 87 patients wearing accelerometers on their wrists in an academic hospital setting. The data was evaluated using five deep neural network models: VGG, ResNet, MobileNet, SqueezeNet, and a custom Transformer network. These models outperformed a rule-based clinical score (Sequential Organ Failure Assessment, SOFA) used as a baseline when predicting acuity state (for ground truth we labeled as unstable patients if they needed life-supporting therapies, and as stable otherwise), particularly regarding the precision, sensitivity, and F1 score. The results demonstrate that integrating accelerometer data with demographics and clinical variables improves predictive performance compared to traditional scoring systems in healthcare. Deep learning models consistently outperformed the SOFA score baseline across various scenarios, showing notable enhancements in metrics such as the area under the receiver operating characteristic (ROC) Curve (AUC), precision, sensitivity, specificity, and F1 score. The most comprehensive scenario, leveraging accelerometer, demographics, and clinical data, achieved the highest AUC of 0.73, compared to 0.53 when using SOFA score as the baseline, with significant improvements in precision (0.80 vs. 0.23), specificity (0.79 vs. 0.73), and F1 score (0.77 vs. 0.66). This study demonstrates a novel approach beyond the simplistic differentiation between stable and unstable conditions. By incorporating mobility and comprehensive patient information, we distinguish between these states in critically ill patients and capture essential nuances in physiology and functional status. Unlike rudimentary definitions, such as equating low blood pressure with instability, our methodology delves deeper, offering a more holistic understanding and potentially valuable insights for acuity assessment.

4.
PLoS One ; 19(4): e0299332, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38652731

RESUMEN

Standard race adjustments for estimating glomerular filtration rate (GFR) and reference creatinine can yield a lower acute kidney injury (AKI) and chronic kidney disease (CKD) prevalence among African American patients than non-race adjusted estimates. We developed two race-agnostic computable phenotypes that assess kidney health among 139,152 subjects admitted to the University of Florida Health between 1/2012-8/2019 by removing the race modifier from the estimated GFR and estimated creatinine formula used by the race-adjusted algorithm (race-agnostic algorithm 1) and by utilizing 2021 CKD-EPI refit without race formula (race-agnostic algorithm 2) for calculations of the estimated GFR and estimated creatinine. We compared results using these algorithms to the race-adjusted algorithm in African American patients. Using clinical adjudication, we validated race-agnostic computable phenotypes developed for preadmission CKD and AKI presence on 300 cases. Race adjustment reclassified 2,113 (8%) to no CKD and 7,901 (29%) to a less severe CKD stage compared to race-agnostic algorithm 1 and reclassified 1,208 (5%) to no CKD and 4,606 (18%) to a less severe CKD stage compared to race-agnostic algorithm 2. Of 12,451 AKI encounters based on race-agnostic algorithm 1, race adjustment reclassified 591 to No AKI and 305 to a less severe AKI stage. Of 12,251 AKI encounters based on race-agnostic algorithm 2, race adjustment reclassified 382 to No AKI and 196 (1.6%) to a less severe AKI stage. The phenotyping algorithm based on refit without race formula performed well in identifying patients with CKD and AKI with a sensitivity of 100% (95% confidence interval [CI] 97%-100%) and 99% (95% CI 97%-100%) and a specificity of 88% (95% CI 82%-93%) and 98% (95% CI 93%-100%), respectively. Race-agnostic algorithms identified substantial proportions of additional patients with CKD and AKI compared to race-adjusted algorithm in African American patients. The phenotyping algorithm is promising in identifying patients with kidney disease and improving clinical decision-making.


Asunto(s)
Lesión Renal Aguda , Negro o Afroamericano , Tasa de Filtración Glomerular , Hospitalización , Insuficiencia Renal Crónica , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/epidemiología , Algoritmos , Creatinina/sangre , Riñón/fisiopatología , Fenotipo , Insuficiencia Renal Crónica/fisiopatología , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/diagnóstico
5.
Sci Rep ; 14(1): 8442, 2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600110

RESUMEN

Using clustering analysis for early vital signs, unique patient phenotypes with distinct pathophysiological signatures and clinical outcomes may be revealed and support early clinical decision-making. Phenotyping using early vital signs has proven challenging, as vital signs are typically sampled sporadically. We proposed a novel, deep temporal interpolation and clustering network to simultaneously extract latent representations from irregularly sampled vital signs and derive phenotypes. Four distinct clusters were identified. Phenotype A (18%) had the greatest prevalence of comorbid disease with increased prevalence of prolonged respiratory insufficiency, acute kidney injury, sepsis, and long-term (3-year) mortality. Phenotypes B (33%) and C (31%) had a diffuse pattern of mild organ dysfunction. Phenotype B's favorable short-term clinical outcomes were tempered by the second highest rate of long-term mortality. Phenotype C had favorable clinical outcomes. Phenotype D (17%) exhibited early and persistent hypotension, high incidence of early surgery, and substantial biomarker incidence of inflammation. Despite early and severe illness, phenotype D had the second lowest long-term mortality. After comparing the sequential organ failure assessment scores, the clustering results did not simply provide a recapitulation of previous acuity assessments. This tool may impact triage decisions and have significant implications for clinical decision-support under time constraints and uncertainty.


Asunto(s)
Puntuaciones en la Disfunción de Órganos , Sepsis , Humanos , Enfermedad Aguda , Fenotipo , Biomarcadores , Análisis por Conglomerados
6.
Am J Surg ; 232: 45-53, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38383166

RESUMEN

BACKGROUND: There is no consensus regarding safe intraoperative blood pressure thresholds that protect against postoperative acute kidney injury (AKI). This review aims to examine the existing literature to delineate safe intraoperative hypotension (IOH) parameters to prevent postoperative AKI. METHODS: PubMed, Cochrane Central, and Web of Science were systematically searched for articles published between 2015 and 2022 relating the effects of IOH on postoperative AKI. RESULTS: Our search yielded 19 articles. IOH risk thresholds ranged from <50 to <75 â€‹mmHg for mean arterial pressure (MAP) and from <70 to <100 â€‹mmHg for systolic blood pressure (SBP). MAP below 65 â€‹mmHg for over 5 â€‹min was the most cited threshold (N â€‹= â€‹13) consistently associated with increased postoperative AKI. Greater magnitude and duration of MAP and SBP below the thresholds were generally associated with a dose-dependent increase in postoperative AKI incidence. CONCLUSIONS: While a consistent definition for IOH remains elusive, the evidence suggests that MAP below 65 â€‹mmHg for over 5 â€‹min is strongly associated with postoperative AKI, with the risk increasing with the magnitude and duration of IOH.


Asunto(s)
Lesión Renal Aguda , Hipotensión , Complicaciones Intraoperatorias , Complicaciones Posoperatorias , Humanos , Lesión Renal Aguda/etiología , Lesión Renal Aguda/epidemiología , Lesión Renal Aguda/prevención & control , Hipotensión/etiología , Hipotensión/epidemiología , Hipotensión/prevención & control , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/prevención & control , Complicaciones Posoperatorias/etiología , Complicaciones Intraoperatorias/prevención & control , Complicaciones Intraoperatorias/epidemiología , Complicaciones Intraoperatorias/etiología
7.
Ann Vasc Surg ; 98: 342-349, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37423327

RESUMEN

BACKGROUND: Postoperative acute kidney injury (AKI) is common after major surgery and is associated with increased morbidity, mortality, and cost. Additionally, there are recent studies demonstrating that time to renal recovery may have a substantial impact on clinical outcomes. We hypothesized that patients with delayed renal recovery after major vascular surgery will have increased complications, mortality, and hospital cost. METHODS: A single-center retrospective cohort of patients undergoing nonemergent major vascular surgery between 6/1/2014 and 10/1/2020 was analyzed. Development of postoperative AKI (defined using Kidney Disease Improving Global Outcomes (KDIGO) criteria: >50% or > 0.3 mg/dl absolute increase in serum creatinine relative to reference after surgery and before discharge) was evaluated. Patients were divided into 3 groups: no AKI, rapidly reversed AKI (<48 hours), and persistent AKI (≥48 hours). Multivariable generalized linear models were used to evaluate the association between AKI groups and postoperative complications, 90-day mortality, and hospital cost. RESULTS: A total of 1,881 patients undergoing 1,980 vascular procedures were included. Thirty five percent of patients developed postoperative AKI. Patients with persistent AKI had longer intensive care unit and hospital stays, as well as more mechanical ventilation days. In multivariable logistic regression analysis, persistent AKI was a major predictor of 90-day mortality (odds ratio 4.1, 95% confidence interval 2.4-7.1). Adjusted average cost was higher for patients with any type of AKI. The incremental cost of having any AKI ranged from $3,700 to $9,100, even after adjustment for comorbidities and other postoperative complications. The adjusted average cost for patients stratified by type of AKI was higher among patients with persistent AKI compared to those with no or rapidly reversed AKI. CONCLUSIONS: Persistent AKI after vascular surgery is associated with increased complications, mortality, and cost. Strategies to prevent and aggressively treat AKI, specifically persistent AKI, in the perioperative setting are imperative to optimize care for this population.


Asunto(s)
Lesión Renal Aguda , Costos de Hospital , Humanos , Estudios Retrospectivos , Factores de Riesgo , Resultado del Tratamiento , Complicaciones Posoperatorias , Procedimientos Quirúrgicos Vasculares/efectos adversos , Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/etiología , Mortalidad Hospitalaria
8.
IEEE Int Conf Bioinform Biomed Workshops ; 2023: 2207-2212, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38463539

RESUMEN

Quantifying pain in patients admitted to intensive care units (ICUs) is challenging due to the increased prevalence of communication barriers in this patient population. Previous research has posited a positive correlation between pain and physical activity in critically ill patients. In this study, we advance this hypothesis by building machine learning classifiers to examine the ability of accelerometer data collected from daily wearables to predict self-reported pain levels experienced by patients in the ICU. We trained multiple Machine Learning (ML) models, including Logistic Regression, CatBoost, and XG-Boost, on statistical features extracted from the accelerometer data combined with previous pain measurements and patient demographics. Following previous studies that showed a change in pain sensitivity in ICU patients at night, we performed the task of pain classification separately for daytime and nighttime pain reports. In the pain versus no-pain classification setting, logistic regression gave the best classifier in daytime (AUC: 0.72, F1-score: 0.72), and CatBoost gave the best classifier at nighttime (AUC: 0.82, F1-score: 0.82). Performance of logistic regression dropped to 0.61 AUC, 0.62 F1-score (mild vs. moderate pain, nighttime), and CatBoost's performance was similarly affected with 0.61 AUC, 0.60 F1-score (moderate vs. severe pain, daytime). The inclusion of analgesic information benefited the classification between moderate and severe pain. SHAP analysis was conducted to find the most significant features in each setting. It assigned the highest importance to accelerometer-related features on all evaluated settings but also showed the contribution of the other features such as age and medications in specific contexts. In conclusion, accelerometer data combined with patient demographics and previous pain measurements can be used to screen painful from painless episodes in the ICU and can be combined with analgesic information to provide moderate classification between painful episodes of different severities.

9.
Artículo en Inglés | MEDLINE | ID: mdl-38585187

RESUMEN

Delirium is a syndrome of acute brain failure which is prevalent amongst older adults in the Intensive Care Unit (ICU). Incidence of delirium can significantly worsen prognosis and increase mortality, therefore necessitating its rapid and continual assessment in the ICU. Currently, the common approach for delirium assessment is manual and sporadic. Hence, there exists a critical need for a robust and automated system for predicting delirium in the ICU. In this work, we develop a machine learning (ML) system for real-time prediction of delirium using Electronic Health Record (EHR) data. Unlike prior approaches which provide one delirium prediction label per entire ICU stay, our approach provides predictions every 12 hours. We use the latest 12 hours of ICU data, along with patient demographic and medical history data, to predict delirium risk in the next 12-hour window. This enables delirium risk prediction as soon as 12 hours after ICU admission. We train and test four ML classification algorithms on longitudinal EHR data pertaining to 16,327 ICU stays of 13,395 patients covering a total of 56,297 12-hour windows in the ICU to predict the dynamic incidence of delirium. The best performing algorithm was Categorical Boosting which achieved an area under receiver operating characteristic curve (AUROC) of 0.87 (95% Confidence Interval; C.I, 0.86-0.87). The deployment of this ML system in ICUs can enable early identification of delirium, thereby reducing its deleterious impact on long-term adverse outcomes, such as ICU cost, length of stay and mortality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA