Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proteomes ; 12(2)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38651369

RESUMEN

Zebra mussel (ZM), Dreissena polymorpha, commonly used as a sentinel species in freshwater biomonitoring, is now in competition for habitat with quagga mussel (QM), Dreissena rostriformis bugensis. This raises the question of the quagga mussel's use in environmental survey. To better characterise QM response to stress compared with ZM, both species were exposed to cadmium (100 µg·L-1), a classic pollutant, for 7 days under controlled conditions. The gill proteomes were analysed using two-dimensional electrophoresis coupled with mass spectrometry. For ZM, 81 out of 88 proteoforms of variable abundance were identified using mass spectrometry, and for QM, 105 out of 134. Interestingly, the proteomic response amplitude varied drastically, with 5.6% of proteoforms of variable abundance (DAPs) in ZM versus 9.4% in QM. QM also exhibited greater cadmium accumulation. Only 12 common DAPs were observed. Several short proteoforms were detected, suggesting proteolysis. Functional analysis is consistent with the pleiotropic effects of the toxic metal ion cadmium, with alterations in sulphur and glutathione metabolisms, cellular calcium signalling, cytoskeletal dynamics, energy production, chaperone activation, and membrane events with numerous proteins involved in trafficking and endocytosis/exocytosis processes. Beyond common responses, the sister species display distinct reactions, with cellular response to stress being the main category involved in ZM as opposed to calcium and cytoskeleton alterations in QM. Moreover, QM exhibited greater evidence of proteolysis and cell death. Overall, these results suggest that QM has a weaker stress response capacity than ZM.

2.
Sci Data ; 6(1): 234, 2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31653851

RESUMEN

Dreissenids are established model species for ecological and ecotoxicological studies, since they are sessile and filter feeder organisms and reflect in situ freshwater quality. Despite this strong interest for hydrosystem biomonitoring, omics data are still scarce. In the present study, we achieved full de novo assembly transcriptomes of digestive glands to gain insight into Dreissena polymorpha and D. rostriformis bugensis molecular knowledge. Transcriptomes were obtained by Illumina RNA sequencing of seventy-nine organisms issued from fifteen populations inhabiting sites that exhibits multiple freshwater contamination levels and different hydrosystem topographies (open or closed systems). Based on a recent de novo assembly algorithm, we carried out a complete, quality-checked and annotated transcriptomes. The power of the present study lies in the completeness of transcriptomes gathering multipopulational organisms sequencing and its full availability through an open access interface that gives a friendly and ready-to-use access to data. The use of such data for proteogenomic and targeted biological pathway investigations purpose is promising as they are first full transcriptomes for this two Dreissena species.


Asunto(s)
Dreissena/genética , Transcriptoma , Animales , Dreissena/clasificación , Monitoreo del Ambiente , Agua Dulce , RNA-Seq
3.
Aquat Toxicol ; 207: 132-141, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30557758

RESUMEN

Serotonin (5-HT) takes a key position in regulating vital functions, such as cardio-ventilatory activity, locomotion and behaviour. Selective serotonin reuptake inhibitors (SSRIs) modulate the serotonergic system and thus affect these functions. Rhythmic behaviours, such as cardio-ventilatory activity, are controlled by central pattern generators, which in turn are regulated by 5-HT. In crustaceans, 5-HT also regulates the synthesis and secretion of crustacean hyperglycaemic hormone, a pleiotropic hormone involved in the mobilisation and release of glucose into the haemolymph, thus stimulating the animal's activity. As a matter of consequence, SSRIs may affect cardio-ventilatory activity. In order to examine how the SSRIs affect fundamental physiological parameters based on rhythmic behaviours in decapods, cardio-respiratory activity in the shore crab Carcinus maenas was assessed after pericardial injection of a single dose of either 0.5 µM, 0.75 µM or 1 µM fluoxetine, respectively. Simultaneous recordings of heart and scaphognathite movements in both brachial chambers were conducted by measuring impedance changes in the respective body compartments. Injection of 5-HT had an immediate effect on cardio-ventilatory activities and strongly upregulated both cardiac and ventilatory activities. Fluoxetine showed similar effects, entailing moderate tachycardia and increased ventilation rates. Compared to 5-HT, these effects were delayed in time and much less pronounced. Metabolism of fluoxetine into the active compound nor-fluoxetine might account for the delayed action, whereas compensatory regulation of cardio-ventilatory frequencies and amplitudes are likely to explain the attenuation of the responses compared to the strong and immediate increase by 5-HT. Overall, the results suggest increased 5-HT levels in invertebrates following fluoxetine exposure, which are able to disturb physiological functions regulated by 5-HT, such as cardiac and respiratory activity.


Asunto(s)
Braquiuros/fisiología , Fluoxetina/farmacología , Corazón/fisiología , Respiración/efectos de los fármacos , Serotonina/farmacología , Animales , Proteínas de Artrópodos/metabolismo , Braquiuros/efectos de los fármacos , Electrodos , Corazón/efectos de los fármacos , Hormonas de Invertebrados/metabolismo , Masculino , Proteínas del Tejido Nervioso/metabolismo , Serotonina/administración & dosificación
4.
Mar Pollut Bull ; 135: 594-606, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30301078

RESUMEN

Intertidal sessile organisms constitute through their life history unintended stress recorders. This study focuses on the impact of pollution on Mytilus edulis ability to cope with an additional stress. For this purpose, two acclimation stages to different temperatures were conducted before an acute stress exposure in mussels collected from a heavily polluted site. Gill proteomes were analyzed by 2DE and regulated proteins identified. Massive mortality was observed for organisms acclimated to colder temperatures. Despite this major difference, both groups shared a common response with a strong representation of proteoforms corresponding to "folding, sorting and degradation" processes. Nevertheless, surviving mussels exhibit a marked increase in protein degradation consistent with the observed decrease of cell defense proteins. Mussels acclimated to warmer temperature response is essentially characterized by an improved heat shock response. These results show the differential ability of mussels to face both pollution and acute heat stress, particularly for low-acclimated organisms.


Asunto(s)
Respuesta al Choque Térmico , Mytilus edulis/fisiología , Contaminación del Agua/efectos adversos , Aclimatación , Animales , Ecotoxicología , Electroforesis en Gel Bidimensional , Francia , Branquias/metabolismo , Mortalidad , Proteoma/análisis , Proteoma/metabolismo , Estrés Fisiológico , Temperatura
5.
Mar Environ Res ; 121: 64-73, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26972988

RESUMEN

Climate change constitutes an additional threat for intertidal species that already have to cope with a challenging environment. The present study focuses on the blue mussel Mytilus edulis and aims at investigating the importance of thermal acclimation in heat stress response. Microcosm exposures were performed with mussels submitted to an identical acute thermal stress following two thermal summer acclimations standing for present or future temperature conditions. Gill proteomes were analyzed by 2DE and 96 differentially expressed proteoforms were identified. Our results show that cell integrity appears to be maintained by the rise in molecular protective systems (i.e. Heat Shock Proteins), and by the reallocation of energy production via a switch to anaerobic metabolism and the setting up of alternative energy pathways. Finally, our results indicate that the response of mussels to acute thermal stress is conditioned by the acclimation temperature with an improved response in organisms acclimated to higher temperatures.


Asunto(s)
Aclimatación , Monitoreo del Ambiente , Mytilus/fisiología , Proteoma/metabolismo , Animales , Calor , Proteómica
6.
Proteomes ; 3(1): 3-41, 2015 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-28248261

RESUMEN

The Blue Mussel (Mytilus edulis, L. 1758) is an ecologically important and commercially relevant bivalve. Because of its ability to bioconcentrate xenobiotics, it is also a widespread sentinel species for environmental pollution, which has been used in ecotoxicological studies for biomarker assessment. Consequently, numerous proteomics studies have been carried out in various research contexts using mussels of the genus Mytilus, which intended to improve our understanding of complex physiological processes related to reproduction, adaptation to physical stressors or shell formation and for biomarker discovery. Differential-display 2-DE proteomics relies on an extensive knowledge of the proteome with as many proteoforms identified as possible. To this end, extensive characterization of proteins was performed in order to increase our knowledge of the Mytilus gill proteome. On average, 700 spots were detected on 2-DE gels by colloidal blue staining, of which 122 different, non-redundant proteins comprising 203 proteoforms could be identified by tandem mass spectrometry. These proteins could be attributed to four major categories: (i) "metabolism", including antioxidant defence and degradation of xenobiotics; (ii) "genetic information processing", comprising transcription and translation as well as folding, sorting, repair and degradation; (iii) "cellular processes", such as cell motility, transport and catabolism; (iv) "environmental information processing", including signal transduction and signalling molecules and interaction. The role of cytoskeleton proteins, energetic metabolism, chaperones/stress proteins, protein trafficking and the proteasome are discussed in the light of the exigencies of the intertidal environment, leading to an enhanced stress response, as well as the structural and physiological particularities of the bivalve gill tissue.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA