Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
J Phys Chem A ; 127(35): 7309-7322, 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37624607

RESUMEN

Carbamate is an emerging class of a polymer backbone for constructing sequence-defined, abiotic polymers. It is expected that new functional materials can be de novo designed by controlling the primary polycarbamate sequence. While amino acids have been actively studied as building blocks for protein folding and peptide self-assembly, carbamates have not been widely investigated from this perspective. Here, we combined infrared (IR), vibrational circular dichroism (VCD), and nuclear magnetic resonance (NMR) spectroscopy with density functional theory (DFT) calculations to understand the conformation of carbamate monomer units in a nonpolar, aprotic environment (chloroform). Compared with amino acid building blocks, carbamates are more rigid, presumably due to the extended delocalization of π-electrons on the backbones. Cis configurations of the amide bond can be energetically stable in carbamates, whereas peptides often assume trans configurations at low energies. This study lays an essential foundation for future developments of carbamate-based sequence-defined polymer material design.

2.
Phys Chem Chem Phys ; 25(15): 10427-10439, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37000584

RESUMEN

The hydrogen-bonded complexes between 2-naphthol (or ß-naphthol) and anisole are explored by detecting their IR absorption in the OH stretching range as well as their UV absorption by means of laser-induced fluorescence and resonance-enhanced two-photon UV ionisation. For the more stable cis and the metastable trans conformations of the OH group in 2-naphthol, hydrogen bonding to the oxygen atom of anisole is consistently detected in different supersonic jet expansions. Alternative hydrogen bonding to the aromatic ring of anisole remains elusive, although the majority of state-of-the-art hybrid DFT functionals with London dispersion correction and - less surprisingly - MP2 wavefunction theory predict it to be slightly more stable at zero-point level, unless three-body dispersion correction is added to the B3LYP-D3(BJ) approach. This changes at the CCSD(T) level, which forecasts an energy advantage of 1-3 kJ mol-1 for the classical hydrogen bond arrangement even after including (DFT) zero-point energy contributions. The UV and IR spectra of the cis complex exhibit clear evidence for intensity redistribution of the primary OH stretch oscillator to combination states with the same low-frequency intermolecular bending mode by Franck-Condon-type vertical excitation mechanisms. This rare case of dual (vibronic and vibrational) Franck-Condon activity of a low-frequency mode invites future studies of homologues where aromatic ring docking of the OH group may be further stabilised, e.g. through anisole ring methylation.

3.
J Chem Phys ; 155(12): 124103, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34598552

RESUMEN

In this paper, we report how graph theory can be used to analyze an ensemble of independent molecular trajectories, which can react during the simulation time-length, and obtain structural and kinetic information. This method is totally general and here is applied to the prototypical case of gas phase fragmentation of protonated cyclo-di-glycine. This methodology allows us to analyze the whole set of trajectories in an automatic computer-based way without the need of visual inspection but by getting all the needed information. In particular, we not only determine the appearance of different products and intermediates but also characterize the corresponding kinetics. The use of colored graph and canonical labeling allows for the correct characterization of the chemical species involved. In the present case, the simulations consist of an ensemble of unimolecular fragmentation trajectories at constant energy such that from the rate constants at different energies, the threshold energy can also be obtained for both global and specific pathways. This approach allows for the characterization of ion-molecule complexes, likely through a roaming mechanism, by properly taking into account the elusive nature of such species. Finally, it is possible to directly obtain the theoretical mass spectrum of the fragmenting species if the reacting system is an ion as in the specific example.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA