Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 473: 134650, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38776816

RESUMEN

Spent mushroom substrate (SMS) holds valuable microbiota that can be useful in remediating polluted soils with hydrocarbons. However, the microorganisms behind the bioremediation process remain uncertain. In this work, a bioremediation assay of total petroleum hydrocarbons (TPHs) polluted soil by SMS application was performed to elucidate the microorganisms and consortia involved in biodegradation by a metabarcoding analysis. Untreated polluted soil was compared to seven bioremediation treatments by adding SMS of Agaricus bisporus, Pleurotus eryngii, Pleurotus ostreatus, and combinations. Soil microbial activity, TPH biodegradation, taxonomic classification, and predictive functional analysis were evaluated in the microbiopiles at 60 days. Different metagenomics approaches were performed to understand the impact of each SMS on native soil microbiota and TPHs biodegradation. All SMSs enhanced the degradation of aliphatic and aromatic hydrocarbons, being A. bisporus the most effective, promoting an efficient consortium constituted by the bacterial families Alcanivoraceae, Alcaligenaceae, and Dietziaceae along with the fungal genera Scedosporium and Aspergillus. The predictive 16 S rRNA gene study partially explained the decontamination efficacy by observing changes in the taxonomic structure of bacteria and fungi, and changes in the potential profiles of estimated degradative genes across the different treatments. This work provides new insights into TPHs bioremediation.


Asunto(s)
Bacterias , Biodegradación Ambiental , Hidrocarburos , Petróleo , Microbiología del Suelo , Contaminantes del Suelo , Contaminantes del Suelo/metabolismo , Hidrocarburos/metabolismo , Petróleo/metabolismo , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación , Agaricus/metabolismo , Hongos/metabolismo , Hongos/genética , Pleurotus/metabolismo , Agaricales/metabolismo , ARN Ribosómico 16S/genética
2.
Environ Sci Pollut Res Int ; 23(13): 13521-30, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27030238

RESUMEN

Phytoremediation of contaminated mine soils requires the use of fast-growing, deep-rooted, high-biomass, and metal-tolerant plants with the application of soil amendments that promote metal uptake by plants. A pot experiment was performed to evaluate the combined use of vetiver grass (Chrysopogon zizanioides) and humic acid for phytoremediation of Cu and Zn in mine soils. Vetiver plants were grown in soil samples collected from two mine sites of Spain mixed with a commercial humic acid derived from leonardite at doses of 0, 2, 10, and 20 g kg(-1). Plant metal concentrations and biomass were measured and metal bioavailability in soils was determined by a low molecular weight organic acid extraction. Results showed that humic acid addition decreased organic acid-extractable metals in soil. Although this extraction method is used to estimate bioavailability of metals, it was not a good estimator under these conditions due to competition with the strong chelators in the added humic acid. High doses of humic acid also promoted root growth and increased Cu concentrations in plants due to formation of soluble metal-organic complexes, which enhanced removal of this metal from soil and its accumulation in roots. Although humic acid was not able to improve Zn uptake, it managed to reduce translocation of Zn and Cu to aerial parts of plants. Vetiver resulted unsuitable for phytoextraction, but our study showed that the combined use of this species with humic acid at 10-20 g kg(-1) could be an effective strategy for phytostabilization of mine soils.


Asunto(s)
Biodegradación Ambiental , Chrysopogon/metabolismo , Cobre , Sustancias Húmicas/análisis , Contaminantes del Suelo , Zinc , Cobre/análisis , Cobre/metabolismo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo , Zinc/análisis , Zinc/metabolismo
3.
Chemosphere ; 103: 164-71, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24342357

RESUMEN

We evaluated the effects of pH and soluble organic carbon affected by organic amendments on metal mobility to find out the optimal conditions for their application in the stabilization of metals in mine soils. Soil samples (pH 5.5-6.2) were mixed with 0, 30 and 60 th a(-1) of sheep-horse manure (pH 9.4) and pine bark compost (pH 5.7). A single-step extraction procedure was performed using 0.005 M CaCl2 adjusted to pH 4.0-7.0 and metal speciation in soil solution was simulated using NICA-Donnan model. Sheep-horse manure reduced exchangeable metal concentrations (up to 71% Cu, 75% Zn) due to its high pH and degree of maturity, whereas pine bark increased them (32% Cu, 33% Zn). However, at increasing dose and hence pH, sheep-horse manure increased soluble Cu because of higher soluble organic carbon, whereas soluble Cu and organic carbon increased at increasing dose and correspondingly decreasing pH in pine bark and non-amended treatments. Near the native pH of these soils (at pH 5.8-6.3), with small doses of amendments, there was minimum soluble Cu and organic carbon. Pine bark also increased Zn solubility, whereas sheep-horse manure reduced it as soluble Zn always decreased with increasing pH. Sheep-horse manure also reduced the proportion of free metals in soil solution (from 41% to 4% Cu, from 97% to 94% Zn), which are considered to be more bioavailable than organic species. Sheep-horse manure amendment could be efficiently used for the stabilization of metals with low risk of leaching to groundwater at low doses and at relatively low pH, such as the native pH of mine soils.


Asunto(s)
Carbono/análisis , Concentración de Iones de Hidrógeno , Estiércol , Metales/análisis , Minería , Contaminantes del Suelo/análisis , Animales , Caballos , Metales/aislamiento & purificación , Ovinos , Contaminantes del Suelo/aislamiento & purificación , Solubilidad
4.
Chemosphere ; 90(2): 276-83, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22854018

RESUMEN

A one-step extraction procedure and a leaching column experiment were performed to assess the effects of citric and tartaric acids on Cu and Zn mobilization in naturally contaminated mine soils to facilitate assisted phytoextraction. A speciation modeling of the soil solution and the metal fractionation of soils were performed to elucidate the chemical processes that affected metal desorption by organic acids. Different extracting solutions were prepared, all of which contained 0.01 M KNO(3) and different concentrations of organic acids: control without organic acids, 0.5 mM citric, 0.5 mM tartaric, 10 mM citric, 10 mM tartaric, and 5 mM citric +5 mM tartaric. The results of the extraction procedure showed that higher concentrations of organic acids increased metal desorption, and citric acid was more effective at facilitating metal desorption than tartaric acid. Metal desorption was mainly influenced by the decreasing pH and the dissolution of Fe and Mn oxides, not by the formation of soluble metal-organic complexes as was predicted by the speciation modeling. The results of the column study reported that low concentrations of organic acids did not significantly increase metal mobilization and that higher doses were also not able to mobilize Zn. However, 5-10 mM citric acid significantly promoted Cu mobilization (from 1 mg kg(-1) in the control to 42 mg kg(-1) with 10 mM citric acid) and reduced the exchangeable (from 21 to 3 mg kg(-1)) and the Fe and Mn oxides (from 443 to 277 mg kg(-1)) fractions. Citric acid could efficiently facilitate assisted phytoextraction techniques.


Asunto(s)
Ácido Cítrico/química , Cobre/química , Minería , Contaminantes del Suelo/química , Tartratos/química , Zinc/química , Cobre/análisis , Cinética , Modelos Químicos , Suelo/química , Contaminantes del Suelo/análisis , Zinc/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA