Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 11(22)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36432756

RESUMEN

Coastal dunes are sensitive indicators of climate change: it is expected that higher precipitation and warmer temperature will promote vegetation growth and sand stabilization. Alternatively, dunes may become active during severe droughts, which would reduce plant cover and increase sand mobility. Consequently, it is relevant to explore community shifts and self-organization processes to better understand how coastal dunes vegetation will respond to these projected changes. Primary succession allows the exploration of community assembly and reorganization processes. We focused on three environmental variables (bare sand, temperature, and precipitation) and five successional groups (facilitators, colonizers, sand binders, nucleators, and competitors). For 25 years (from 1991 to 2016), species turnover was monitored in 150 permanent plots (4 × 4 m) placed on an initially mobile dune system located on the coast of the Gulf of Mexico. The spatiotemporal dynamics observed during primary succession were consistent with the facilitation nucleation model. As late colonizers grew and expanded, psammophytes became locally extinct. The spatial patterns revealed that ecological succession did not occur evenly on the dunes. In addition, the increased mean yearly temperature during the last decades seemed to be associated with the accelerated increment in plant cover and species richness, which had not been registered before in Mexico.

2.
PeerJ ; 8: e8533, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32095358

RESUMEN

We review the concept of ecosystem resilience in its relation to ecosystem integrity from an information theory approach. We summarize the literature on the subject identifying three main narratives: ecosystem properties that enable them to be more resilient; ecosystem response to perturbations; and complexity. We also include original ideas with theoretical and quantitative developments with application examples. The main contribution is a new way to rethink resilience, that is mathematically formal and easy to evaluate heuristically in real-world applications: ecosystem antifragility. An ecosystem is antifragile if it benefits from environmental variability. Antifragility therefore goes beyond robustness or resilience because while resilient/robust systems are merely perturbation-resistant, antifragile structures not only withstand stress but also benefit from it.

3.
Environ Manage ; 51(3): 679-93, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23129241

RESUMEN

The La Antigua watershed drains into the Gulf of Mexico and can be considered as one of the most important areas in Mexico because of its high productivity, history, and biodiversity, although poverty remains high in the area in spite of these positive attributes. In this study, we performed an integrated assessment of the watershed to recommend a better direction toward a sustainable management in which the four capitals (natural, human, social, and built) are balanced. We contrasted these four capitals in the municipalities of the upper, middle and lower watershed and found that natural capital (natural ecosystems and ecosystem services) was higher in the upper and middle watershed, while human and social capitals (literacy, health, education and income) were generally higher downstream. Overall, Human Development Index was negatively correlated with the percentage of natural ecosystems in the watershed, especially in the upper and lower watershed regions. Our results indicate that natural capital must be fully considered in projections for increasing human development, so that natural resources can be preserved and managed adequately while sustaining intergenerational well-being.


Asunto(s)
Conservación de los Recursos Naturales , Abastecimiento de Agua , Ecosistema , Golfo de México , Humanos , México
4.
Ambio ; 37(4): 241-8, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18686502

RESUMEN

Coastal wetlands reduce the damaging effects of hurricanes on coastal communities. A regression model using 34 major US hurricanes since 1980 with the natural log of damage per unit gross domestic product in the hurricane swath as the dependent variable and the natural logs of wind speed and wetland area in the swath as the independent variables was highly significant and explained 60% of the variation in relative damages. A loss of 1 ha of wetland in the model corresponded to an average USD 33,000 (median = USD 5000) increase in storm damage from specific storms. Using this relationship, and taking into account the annual probability of hits by hurricanes of varying intensities, we mapped the annual value of coastal wetlands by 1 km x 1 km pixel and by state. The annual value ranged from USD 250 to USD 51,000 ha(-1) yr(-1), with a mean of USD 8240 ha(-1) yr(-1) (median = USD 3230 ha(-1) yr(-1)) significantly larger than previous estimates. Coastal wetlands in the US were estimated to currently provide USD 23.2 billion yr(-1) in storm protection services. Coastal wetlands function as valuable, selfmaintaining "horizontal levees" for storm protection, and also provide a host of other ecosystem services that vertical levees do not. Their restoration and preservation is an extremely cost-effective strategy for society.


Asunto(s)
Desastres , Humedales , Probabilidad , Análisis de Regresión , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA