RESUMEN
INTRODUCTION: HDL function has gained prominence in the literature as there is a greater predictive capacity for risk in early coronary artery disease when compared to the traditional parameters. However, it is unclear how dietary energy restriction and atorvastatin influence HDL function. METHODS: A randomized controlled trial with 39 women with early CAD divided into three groups (n = 13): energy restriction (30% of VET), atorvastatin (80 mg), and control. Analyses of traditional biochemical markers (lipid and glucose profile), circulating Sirt-1, and HDL function (lipid composition, lipid transfer, and antioxidant capacity). RESULTS: Participants' mean age was 50.5 ± 3.8 years. Energy restriction increased Sirt-1 by 63.6 pg/mL (95%CI: 1.5-125.7; p = 0.045) and reduced BMI by 0.8 kg/m2 (95%CI: -1.349--0.273; p = 0.004) in a manner independent of other cardiometabolic factors. Atorvastatin reduced LDL-c by 40.0 mg/dL (95%CI: -69.910--10.1; p = 0.010). Increased Sirt-1 and reduced BMI were independently associated with reduced phospholipid composition of HDL (respectively, ß = -0.071; CI95%:-0.136--0.006; p = 0.033; ß = 7.486; CI95%:0.350-14.622; p = 0.040). Reduction in BMI was associated with lower HDL-free cholesterol (ß = 0.818; CI95%:0.044-1.593; p = 0.039). LDL-c reduction by statins was associated with reduced maximal lipid peroxide production rate of HDL (ß = 0.002; CI95%:0.000-0.003; p = 0.022) and total conjugated diene generation (ß = 0.001; CI95%:0.000-0.001; p = 0.029). CONCLUSION: This study showed that energy restriction and atorvastatin administration were associated with changes in lipid profile, serum Sirt-1 concentrations, and HDL function.