Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Mol Imaging Biol ; 26(4): 603-615, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38594545

RESUMEN

PURPOSE: We recently developed an optical instrument to non-invasively detect fluorescently labeled circulating tumor cells (CTCs) in mice called 'Diffuse in vivo Flow Cytometry' (DiFC). OTL38 is a folate receptor (FR) targeted near-infrared (NIR) contrast agent that is FDA approved for use in fluorescence guided surgery of ovarian and lung cancer. In this work, we investigated the use OTL38 for in vivo labeling and detection of FR + CTCs with DiFC. PROCEDURES: We tested OTL38 labeling of FR + cancer cell lines (IGROV-1 and L1210A) as well as FR- MM.1S cells in suspensions of Human Peripheral Blood Mononuclear cells (PBMCs) in vitro. We also tested OTL38 labeling and NIR-DIFC detection of FR + L1210A cells in blood circulation in nude mice in vivo. RESULTS: 62% of IGROV-1 and 83% of L1210A were labeled above non-specific background levels in suspensions of PBMCs in vitro compared to only 2% of FR- MM.1S cells. L1210A cells could be labeled with OTL38 directly in circulation in vivo and externally detected using NIR-DiFC in mice with low false positive detection rates. CONCLUSIONS: This work shows the feasibility of labeling CTCs in vivo with OTL38 and detection with DiFC. Although further refinement of the DiFC instrument and signal processing algorithms and testing with other animal models is needed, this work may eventually pave the way for human use of DiFC.


Asunto(s)
Ratones Desnudos , Células Neoplásicas Circulantes , Animales , Células Neoplásicas Circulantes/patología , Humanos , Línea Celular Tumoral , Coloración y Etiquetado , Femenino , Ratones , Citometría de Flujo , Leucocitos Mononucleares
2.
Theranostics ; 14(6): 2526-2543, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646640

RESUMEN

Rationale: A mature tissue resident macrophage (TRM) population residing in the peritoneal cavity has been known for its unique ability to migrate to peritoneally located injured tissues and impart wound healing properties. Here, we sought to expand on this unique ability of large peritoneal macrophages (LPMs) by investigating whether these GATA6+ LPMs could also intravasate into systemic circulation and migrate to extra-peritoneally located lungs upon ablating lung-resident alveolar macrophages (AMs) by intranasally administered clodronate liposomes in mice. Methods: C12-200 cationic lipidoid-based nanoparticles were employed to selectively deliver a small interfering RNA (siRNA)-targeting CD-45 labeled with a cyanine 5.5 (Cy5.5) dye to LPMs in vivo via intraperitoneal injection. We utilized a non-invasive optical technique called Diffuse In Vivo Flow Cytometry (DiFC) to then systemically track these LPMs in real time and paired it with more conventional techniques like flow cytometry and immunocytochemistry to initially confirm uptake of C12-200 encapsulated siRNA-Cy5.5 (siRNA-Cy5.5 (C12-200)) into LPMs, and further track them from the peritoneal cavity to the lungs in a mouse model of AM depletion incited by intranasally administered clodronate liposomes. Also, we stained for LPM-specific marker zinc-finger transcription factor GATA6 in harvested cells from biofluids like broncho-alveolar lavage as well as whole blood to probe for Cy5.5-labeled LPMs in the lungs as well as in systemic circulation. Results: siRNA-Cy5.5 (C12-200) was robustly taken up by LPMs. Upon depletion of lung-resident AMs, these siRNA-Cy5.5 (C12-200) labeled LPMs rapidly migrated to the lungs via systemic circulation within 12-24 h. DiFC results showed that these LPMs intravasated from the peritoneal cavity and utilized a systemic route of migration. Moreover, immunocytochemical staining of zinc-finger transcription factor GATA6 further confirmed results from DiFC and flow cytometry, confirming the presence of siRNA-Cy5.5 (C12-200)-labeled LPMs in the peritoneum, whole blood and BALF only upon clodronate-administration. Conclusion: Our results indicate for the very first time that selective tropism, migration, and infiltration of LPMs into extra-peritoneally located lungs was dependent on clodronate-mediated AM depletion. These results further open the possibility of therapeutically utilizing LPMs as delivery vehicles to carry nanoparticle-encapsulated oligonucleotide modalities to potentially address inflammatory diseases, infectious diseases and even cancer.


Asunto(s)
Ácido Clodrónico , Pulmón , Macrófagos Peritoneales , Nanopartículas , Animales , Ácido Clodrónico/farmacología , Ácido Clodrónico/administración & dosificación , Nanopartículas/química , Nanopartículas/administración & dosificación , Ratones , Pulmón/metabolismo , Macrófagos Peritoneales/metabolismo , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Alveolares/metabolismo , ARN Interferente Pequeño/administración & dosificación , Factor de Transcripción GATA6/metabolismo , Liposomas , Ratones Endogámicos C57BL , Carbocianinas/química , Movimiento Celular/efectos de los fármacos , Citometría de Flujo
3.
J Biomed Opt ; 27(9)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36114606

RESUMEN

Significance: Diffuse in vivo flow cytometry (DiFC) is an emerging technique for enumerating rare fluorescently labeled circulating cells noninvasively in the bloodstream. Thus far, we have reported red and blue-green versions of DiFC. Use of near-infrared (NIR) fluorescent light would in principle allow use of DiFC in deeper tissues and would be compatible with emerging NIR fluorescence molecular contrast agents. Aim: We describe the design of a NIR-DiFC instrument and demonstrate its use in optical flow phantoms in vitro and in mice in vivo. Approach: We developed an improved optical fiber probe design for efficient collection of fluorescence from individual circulating cells and efficient rejection of instrument autofluorescence. We built a NIR-DiFC instrument. We tested this with NIR fluorescent microspheres and cell lines labeled with OTL38 fluorescence contrast agent in a flow phantom model. We also tested NIR-DiFC in nude mice injected intravenously with OTL38-labeled L1210A cells. Results: NIR-DiFC allowed detection of circulating tumor cells (CTCs) in flow phantoms with mean signal-to-noise ratios (SNRs) of 19 to 32 dB. In mice, fluorescently labeled CTCs were detectable with mean SNR of 26 dB. NIR-DiFC also exhibited orders significantly lower autofluorescence and false-alarm rates than blue-green DiFC. Conclusions: NIR-DiFC allows use of emerging NIR contrast agents. Our work could pave the way for future use of NIR-DiFC in humans.


Asunto(s)
Medios de Contraste , Células Neoplásicas Circulantes , Animales , Recuento de Células , Citometría de Flujo/métodos , Colorantes Fluorescentes , Humanos , Ratones , Ratones Desnudos , Células Neoplásicas Circulantes/patología
4.
J Biomed Opt ; 27(6)2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35726129

RESUMEN

SIGNIFICANCE: "Diffuse in vivo flow cytometry" (DiFC) is an emerging technology for fluorescence detection of rare circulating cells directly in large deep-seated blood vessels in mice. Because DiFC uses highly scattered light, in principle, it could be translated to human use. However, an open question is whether fluorescent signals from single cells would be detectable in human-scale anatomies. AIM: Suitable blood vessels in a human wrist or forearm are at a depth of ∼2 to 4 mm. The aim of this work was to study the impact of DiFC instrument geometry and wavelength on the detected DiFC signal and on the maximum depth of detection of a moving cell. APPROACH: We used Monte Carlo simulations to compute fluorescence Jacobian (sensitivity) matrices for a range of source and detector separations (SDS) and tissue optical properties over the visible and near infrared spectrum. We performed experimental measurements with three available versions of DiFC (488, 640, and 780 nm), fluorescent microspheres, and tissue mimicking optical flow phantoms. We used both computational and experimental data to estimate the maximum depth of detection at each combination of settings. RESULTS: For the DiFC detection problem, our analysis showed that for deep-seated blood vessels, the maximum sensitivity was obtained with NIR light (780 nm) and 3-mm SDS. CONCLUSIONS: These results suggest that-in combination with a suitable molecularly targeted fluorescent probes-circulating cells and nanosensors could, in principle, be detectable in circulation in humans.


Asunto(s)
Colorantes Fluorescentes , Animales , Citometría de Flujo/métodos , Humanos , Ratones , Microesferas , Método de Montecarlo , Fantasmas de Imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA