RESUMEN
Nutrient imbalances may negatively affect the health status of forests exposed to multiple stress factors, including drought and bark beetle calamities. We studied the origin of base cations in runoff from a small Carpathian catchment underlain by base-poor flysch turbidites using magnesium (Mg), calcium (Ca) and strontium (Sr) isotope composition of 10 ecosystem compartments. Our objective was to constrain conclusions drawn from long-term hydrochemical monitoring of inputs and outputs. Annual export of Mg, Ca and Sr exceeds 5-to-15 times their atmospheric input. Mass budgets per se thus indicate sizeable net leaching of Mg, Ca and Sr from bedrock sandstones and claystones. Surprisingly, δ26Mg, δ44Ca and 87Sr/86Sr isotope ratios of runoff were practically identical to those of atmospheric deposition and soil water but significantly different from bedrock isotope ratios. We did not find any carbonates in the studied area as a hypothetical, easily dissolvable source of base cations whose isotope composition might corroborate the predominance of geogenic base cations in the runoff. Marine carbonates typically have lower δ26 Mg and 87Sr/86Sr ratios, and silicate sediments often have higher δ26Mg and 87Sr/86Sr ratios than runoff at the study site. Mixing of these two sources, if confirmed, could reconcile the flux and isotope data.
Asunto(s)
Calcio , Magnesio , Calcio/análisis , Magnesio/análisis , Ecosistema , Monitoreo del Ambiente , Isótopos de Estroncio/análisis , Isótopos , Cationes , CarbonatosRESUMEN
Antimony (Sb) concentrations were measured in wet atmospheric deposition at 10 high-elevation sites in the Czech Republic (Central Europe) during three winter seasons (2009-2011). Soluble and insoluble Sb forms were quantified in snow (vertical deposition) and rime (horizontal deposition) on mountain summits located equidistantly near the Czech borders with Austria, Germany and Poland. The highest Sb concentrations were found in the soluble form in rime (0.47 µg L-1), while the lowest Sb concentrations were those in the insoluble form in snow (0.017 µg L-1). The estimated average Sb deposition rate in Central Europe amounted to 1.3. 10-4 g m-2 yr-1. Most Sb was deposited in the soluble form in snow (7.9. 10-5 g m-2 yr-1), followed by the soluble form in rime (3.5. 10-5 g m-2 yr-1). The corresponding insoluble fraction contained less Sb, namely 1.2. 10-5 g m-2 yr-1 in snow and 2.3. 10-6 g m-2 yr-1 in rime. The average Sb deposition in Central Europe, measured at an altitude of 1000 m a.s.l., was by six orders of magnitude higher compared to Sb deposition in the Arctic (7. 10-10 g m-2 yr-1), and by four orders of magnitude lower compared to Sb deposition in a Sb-Hg mining district in China (7 g m-2 yr-1). Using the HYSPLIT model, backward trajectories of air masses indicated that the Sb sources were predominantly situated in Upper and Lower Silesia.
Asunto(s)
Contaminantes Atmosféricos , Antimonio , Antimonio/análisis , Monitoreo del Ambiente , Nieve , Europa (Continente) , Minería , Contaminantes Atmosféricos/análisisRESUMEN
Slightly elevated concentrations of toxic species in waters sampled in the surroundings of a leaky landfill may be both a sign of an approaching contaminant plume, or a result of water-rock interaction. Isotopes can be instrumental in distinguishing between anthropogenic and geogenic species in groundwater. We studied sulfur and lead isotope ratios at an abandoned industrial-waste landfill, located in a densely populated part of Central Europe. Stable isotope variability in space and time was used to follow the movement of a groundwater plume, contaminated with toxic metals (Cd, Cr, Be), in fractured granitoids. Toxic metals had been mobilized from industrial waste by a strong pulse of sulfuric acid, also deposited in the landfill. Both tracers exhibited a wide range of values (δ(34)S between +2.6 and +18.9; (206)Pb/(207)Pb between 1.16 and 1.39), which facilitated identification of mixing end-members, and made it possible to assess the sources of the studied species. In situ fractionations did not hinder source apportionment. Influx of contaminated groundwater was observed neither in irrigation wells in a nearby village, nor at distances greater than 300 m from the landfill. Combination of stable isotope tracers can be used as part of an early-warning system in landscapes affected by landfills.
Asunto(s)
Monitoreo del Ambiente/métodos , Residuos Industriales , Eliminación de Residuos , Contaminantes Químicos del Agua/análisis , República Checa , Agua Subterránea/análisis , Isótopos , Plomo , Isótopos de AzufreRESUMEN
Arsenic in natural waters and in soils represents a serious health hazard. Natural sources of this element in soil are the subject of this communication. Weathering mass balance of As and rates of weathering in soils are evaluated from monitored inputs and outputs in two small watersheds. These watersheds are located within the Celina-Mokrsko gold district, Czech Republic. Annual chemical weathering fluxes of As are calculated from the monthly weighted means of stream water and groundwater. The fluxes are corrected for atmospheric precipitation, agrochemical inputs, and biological uptake. Mechanical and chemical weathering rates of the arsenopyrite-bearing rocks in the watersheds were estimated from mass balance data on sodium and silica. The input of As due to total weathering of bedrock was estimated to be 1369 g ha(-1)yr(-1) in the Mokrsko watershed (MW) and 81 g ha(-1)yr(-1) in the Celina watershed (CW). These results indicate that the annual weathering rate of As in the watersheds represents more than 95% of the total As input to the soil. Accumulation rate of As in the soil was estimated at 311 g ha(-1)yr(-1) in MW and 69 g ha(-1)yr(-1) in CW. The mass balance method for calculation of weathering rate of As was used, and the results suggest that weathering could be the most important process in the As biogeochemistry of the areas with elevated As content in the bedrock. Simple model of weathering and erosion can be used successfully in estimating their role in As pollution on the scale of small watershed. The method is also useful for indicating the mass balance of As in soils that is controlled by both the natural and anthropogenic inputs and outputs of As.
Asunto(s)
Arsénico/análisis , Contaminantes del Suelo/análisis , República Checa , Monitoreo del Ambiente , Fenómenos Geológicos , Geología , Abastecimiento de AguaRESUMEN
The concentration of the estrogens 17beta-estradiol, estriol, estrone, 17alpha-ethinylestradiol, mestranol and norethisterone and of the anthropogenic gadolinium (Gd(ant)) has been determined in the creeks and rivers, sewage treatment plants and water works of the city of Prague. The rapid degradation of estrogens in surface water allows the estrogen concentration gradient to be used as a very precise and sensitive guideline by which to pin-point sewage leaks into surface run-off water. The rather conservative behavior of Gd(ant) in surface and ground water documents in the present case the presence of sewage water in the surface water cycle.
Asunto(s)
Estrógenos/análisis , Gadolinio/análisis , Aguas del Alcantarillado/química , Contaminantes Químicos del Agua/análisis , República Checa , Sensibilidad y EspecificidadRESUMEN
Lead originating from coal burning, gasoline burning, and ore smelting was identified in 210Pb-dated profiles through eight peat bogs distributed over an area of 60,000 km2. The Sphagnum-dominated bogs were located mainly in mountainous regions of the Czech Republic bordering with Germany, Austria, and Poland. Basal peat 14C-dated at 11,000 years BP had a relatively high 206Pb/207Pb ratio (1.193). Peat deposited around 1800 AD had a lower 206Pb/207Pb ratio of 1.168-1.178, indicating that environmental lead in Central Europe had been largely affected by human activity (smelting) even before the beginning of the Industrial Revolution. Five of the sites exhibited a nearly constant 206Pb/207Pb ratio (1.175) throughout the 19th century, resembling the "anthropogenic baseline" described in Northern Europe (1.17). At all sites, the 206Pb/207Pb ratio of peat decreased at least until 1980; at four sites, a reversal to more radiogenic values (higher 206Pb/207Pb), typical of easing pollution, was observed in the following decade (1980-1990). A time series of annual outputs for 14 different mining districts dispersing lead into the environment has been constructed for the past 200 years. The production of Ag-Pb, coal, and leaded gasoline peaked in 1900, 1980, and 1980, respectively. In contrast to other European countries, no peak in annual Pb accumulation rates was found in 1900, the year of maximum ore smelting. The highest annual Pb accumulation rates in peat were consistent with the highest Pb emission rates from coal-fired power plants and traffic (1980). Although maximum coal and gasoline production coincided in time, their isotope ratios were unique. The mean measured 206Pb/207Pb ratios of local coal, ores, and gasoline were 1.19, 1.16, and 1.11, respectively. A considerable proportion of coal emissions, relative to gasoline emisions, was responsible for the higher 206Pb/207Pb ratios in the recent atmosphere (1.15) compared to Western Europe (1.10). As in West European countries, the gasoline sold in the Czech Republic during the Communist era (1948-1989) contained an admixture of low-radiogenic Precambrian lead from Australia.