Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Food Chem Toxicol ; 191: 114861, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38992409

RESUMEN

The prevalent use of Azorubine (E122) and the unintentional food additive, Bisphenol A (BPA), in ready-to-drink (RTD) beverages raises significant health concerns, especially for children. The combined impact on embryonic development must be explored despite individual safety assessments. Our investigation revealed that the combined exposure of E122 and BPA at beverage concentration significantly induces mortality and morphological deformities, including reduced growth, pericardial edema, and yolk sac edema. The co-exposure triggers oxidative stress, impairing antioxidant enzyme responses and resulting in lipid and cellular damage. Notably, apoptotic cells are observed in the neural tube and notochord of the co-exposed larvae. Critical genes related to the antioxidant response elements (nrf2, ho1, and nqo1), apoptosis activation (bcl2, bax, and p53), and pro/anti-inflammatory cytokines (nfkb, tnfa, il1b, tgfb, il10, and il12) displayed substantial changes, highlighting the molecular mechanisms. Behavior studies indicated hypo-locomotion with reduced thigmotaxis and touch response in co-exposed larvae, distinguishing it from individual exposures. These findings underscore the neurodevelopmental impacts of E122 and BPA at reported beverage concentrations, emphasizing the urgent need for comprehensive safety assessments, particularly for child consumption.

2.
Eur J Pharmacol ; 976: 176680, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38810716

RESUMEN

The escalating focus on ageing-associated disease has generated substantial interest in the phenomenon of cognitive impairment linked to diabetes. Hyperglycemia exacerbates oxidative stress, contributes to ß-amyloid accumulation, disrupts mitochondrial function, and impairs cognitive function. Existing therapies have certain limitations, and apigenin (AG), a natural plant flavonoid, has piqued interest due to its antioxidant, anti-inflammatory, and anti-hyperglycemic properties. So, we anticipate that AG might be a preventive medicine for hyperglycemia-associated amnesia. To test our hypothesis, naïve zebrafish were trained to acquire memory and pretreated with AG. Streptozotocin (STZ) was administered to mimic hyperglycemia-induced memory dysfunction. Spatial memory was assessed by T-maze and object recognition through visual stimuli. Acetylcholinesterase (AChE) activity, antioxidant enzyme status, and neuroinflammatory genes were measured, and histopathology was performed in the brain to elucidate the neuroprotective mechanism. AG exhibits a prophylactic effect and improves spatial learning and discriminative memory of STZ-induced amnesia in zebrafish under hyperglycemic conditions. AG also reduces blood glucose levels, brain oxidative stress, and AChE activity, enhancing cholinergic neurotransmission. AG prevented neuronal damage by regulating brain antioxidant response elements (ARE), collectively contributing to neuroprotective properties. AG demonstrates a promising effect in alleviating memory dysfunction and mitigating pathological changes via activation of the Nrf2/ARE mechanism. These findings underscore the therapeutic potential of AG in addressing memory dysfunction and neurodegenerative changes associated with hyperglycemia.


Asunto(s)
Amnesia , Apigenina , Hiperglucemia , Factor 2 Relacionado con NF-E2 , Fármacos Neuroprotectores , Estrés Oxidativo , Pez Cebra , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Hiperglucemia/complicaciones , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Amnesia/tratamiento farmacológico , Amnesia/metabolismo , Estrés Oxidativo/efectos de los fármacos , Apigenina/farmacología , Apigenina/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Acetilcolinesterasa/metabolismo , Transducción de Señal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Proteínas de Pez Cebra/metabolismo , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Masculino , Estreptozocina , Aprendizaje por Laberinto/efectos de los fármacos , Memoria Espacial/efectos de los fármacos , Modelos Animales de Enfermedad
3.
Br J Pharmacol ; 181(16): 2947-2963, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38679467

RESUMEN

BACKGROUND AND PURPOSE: Parkinson's disease (PD) is a prevalent neurodegenerative movement disorder characterized by motor dysfunction. Environmental factors, especially manganese (Mn), contribute significantly to PD. Existing therapies are focused on motor coordination, whereas nonmotor features such as neuropsychiatric symptoms are often neglected. Daidzein (DZ), a phytoestrogen, has piqued interest due to its antioxidant, anti-inflammatory, and anxiolytic properties. Therefore, we anticipate that DZ might be an effective drug to alleviate the nonmotor symptoms of Mn-induced Parkinsonism. EXPERIMENTAL APPROACH: Naïve zebrafish were exposed to 2 mM of Mn for 21 days and intervened with DZ. Nonmotor symptoms such as anxiety, social behaviour, and olfactory function were assessed. Acetylcholinesterase (AChE) activity and antioxidant enzyme status were measured from brain tissue through biochemical assays. Dopamine levels and histology were performed to elucidate neuroprotective mechanism of DZ. KEY RESULTS: DZ exhibited anxiolytic effects in a novel environment and also improved intra and inter fish social behaviour. DZ improved the olfactory function and response to amino acid stimuli in Mn-induced Parkinsonism. DZ reduced brain oxidative stress and AChE activity and prevented neuronal damage. DZ increased DA level in the brain, collectively contributing to neuroprotection. CONCLUSION AND IMPLICATIONS: DZ demonstrated a promising effect on alleviating nonmotor symptoms such as anxiety and olfactory dysfunction, through the mitigation of cellular damage. These findings underscore the therapeutic potential of DZ in addressing nonmotor neurotoxicity induced by heavy metals, particularly in the context of Mn-induced Parkinsonism.


Asunto(s)
Conducta Animal , Modelos Animales de Enfermedad , Isoflavonas , Manganeso , Trastornos Parkinsonianos , Pez Cebra , Animales , Isoflavonas/farmacología , Isoflavonas/uso terapéutico , Conducta Animal/efectos de los fármacos , Manganeso/toxicidad , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/metabolismo , Acetilcolinesterasa/metabolismo , Dopamina/metabolismo , Estrés Oxidativo/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Fármacos Neuroprotectores/farmacología , Masculino , Ansiedad/tratamiento farmacológico , Ansiedad/inducido químicamente , Conducta Social
4.
Artículo en Inglés | MEDLINE | ID: mdl-38508353

RESUMEN

This study investigated the reproductive toxicity of rhodamine B in zebrafish and its transgenerational effects on the F1 generation. In silico toxicity predictions revealed high toxicity of rhodamine B, mainly targeting pathways associated with the reproductive and endocrine systems. In vivo experiments on zebrafish demonstrated that rhodamine B exposure at a concentration of 1.5 mg/L led to significant impairments in fecundity parameters, particularly affecting females. Histopathological analysis revealed distinct changes in reproductive organs, further confirming the reproductive toxicity of rhodamine B, with females being more susceptible than males. Gene expression studies indicated significant suppression of genes crucial for ovulation in rhodamine B-treated female fish, highlighting hormonal imbalance as a potential mechanism of reproductive toxicity. Furthermore, bioaccumulation studies showed the presence of rhodamine B in both adult fish gonads and F1 generation samples, suggesting transgenerational transfer of the dye. Embryotoxicity studies on F1 generation larvae demonstrated reduced survival rates, lower hatching rates, and increased malformations in groups exposed to rhodamine B. Moreover, rhodamine B induced oxidative stress in F1 generation larvae, as evidenced by elevated levels of reactive oxygen species and altered antioxidant enzyme activity. Neurotoxicity assessments revealed reduced acetylcholinesterase activity, indicating potential neurological impairments in F1 generation larvae. Additionally, locomotory defects and skeletal abnormalities were observed in F1 generation larvae exposed to rhodamine B. This study provides comprehensive evidence of the reproductive toxicity of rhodamine B in adult zebrafish and its transgenerational effects on the F1 generation.


Asunto(s)
Rodaminas , Contaminantes Químicos del Agua , Pez Cebra , Masculino , Animales , Femenino , Pez Cebra/metabolismo , Acetilcolinesterasa/metabolismo , Reproducción , Gónadas , Contaminantes Químicos del Agua/metabolismo
5.
Biotechnol Appl Biochem ; 71(3): 627-640, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38311972

RESUMEN

Parmotrema perlatum, a lichen belonging to the family Parmeliaceae, is well known for its culinary benefits and aroma used as a condiment in Indian homes is also known as the "black stone flower" or "kalpasi" in India. This research intends to analyze the antioxidant power of the crude extracts using four pH-based buffers solubilized proteins/peptides and RP-HPLC fractions of P. perlatum obtained by purification. The proteins that were extracted from the four different buffers were examined using LC-MS/MS-based peptide mass fingerprinting. When compared to the other buffers, the 0.1 M of Tris-HCl buffer pH 8.0 solubilized proteins/peptides had the strongest antioxidant capacity. The sequential purification of the peptide was carried out by using a 3-kDa cut-off membrane filter and semipreparative RP-HPLC. Additionally, the purified fractions of the peptide's antioxidant activity were assessed, and effects were compared with those of the crude and 3 kDa cut--off membrane filtrates. The peptide fractions were sequenced by LC-MS/MS, which reveals that fraction 2 from RP-HPLC with the sequence LSWFMVVAP has shown the highest antioxidant potential in comparison with other fractions which can serve as the potential natural antioxidant drug. Further, fraction 2 also showed antibacterial activity against the selected microorganisms.


Asunto(s)
Antibacterianos , Antioxidantes , Espectrometría de Masas en Tándem , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Mapeo Peptídico , Péptidos/química , Péptidos/farmacología , Péptidos/aislamiento & purificación , Líquenes/química , Parmeliaceae/química , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/aislamiento & purificación , Cromatografía Líquida con Espectrometría de Masas
6.
Mol Neurobiol ; 61(8): 5320-5336, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38191695

RESUMEN

Aluminium (AL) is a strong environmental neurotoxin linked to neurodegenerative disorders. Widespread industrial use leads to its presence in water systems, causing bioaccumulation in organisms. This, in turn, results in the bioaccumulation of AL in various organisms. Several studies have highlighted the benefits of enhanced physical activity in combating neurodegenerative diseases. Meanwhile widespread presence of apigenin in aquatic environment has been largely overlooked, in terms of its potential to counter AL-induced neurotoxicity. The combined impact of exercise and apigenin in mitigating the effects of AL-induced neurotoxicity in aquatic animals remains unexplored. Hence, the objective of this study is to determine whether the combined treatment of exercise and apigenin can effectively alleviate the chronic neurotoxicity induced by AL. Zebrafish that were exposed to AL showed behaviours resembling anxiety, increased aggression, unusual swimming pattern, and memory impairment, which are typical features observed in Alzheimer's disease (AD)-like syndrome. Combined treatment of exercise and apigenin protects zebrafish from AL-induced neurotoxicity, which was measured by improvements in memory, reduced anxiety and aggression, and increased levels of antioxidant enzymes and acetylcholinesterase (AChE) activity. Furthermore, AL exposure is associated with increased expression of genes related to neuroinflammation and AD. However, synergistic effect of exercise and apigenin counteract this effect in AL-treated zebrafish. These findings suggest that AL is involved in neurodegenerative diseases in fish, which could affect the integrity of aquatic ecosystem. Hence, there is a strong correlation between enhanced physical activity, apigenin, and the well-being of the ecosystem.


Asunto(s)
Acetilcolinesterasa , Aluminio , Apigenina , Condicionamiento Físico Animal , Pez Cebra , Animales , Apigenina/farmacología , Aluminio/toxicidad , Acetilcolinesterasa/metabolismo , Conducta Animal/efectos de los fármacos , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/metabolismo , Antioxidantes/metabolismo , Antioxidantes/farmacología , Ansiedad/tratamiento farmacológico
7.
Int J Biol Macromol ; 259(Pt 1): 129222, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38185307

RESUMEN

The substantial nutritional content and diversified biological activity of plant-based nutraceuticals are due to polyphenolic chemicals. These chemicals are important and well-studied plant secondary metabolites. Their protein interactions are extensively studied. This relationship is crucial for the logical development of functional food and for enhancing the availability and usefulness of polyphenols. This study highlights the influence of protein types and polyphenols on the interaction, where the chemical bindings predominantly consist of hydrophobic interactions and hydrogen bonds. The interaction between polyphenolic compounds (PCs) and digestive enzymes concerning their inhibitory activity has not been fully studied. Therefore, we have examined the interaction of four digestive enzymes (α-amylase, pepsin, trypsin, and α-chymotrypsin) with four PCs (curcumin, diosmin, morin, and 2',3',4'-trihydroxychalcone) through in silico and in vitro approaches. In vitro plate assays, enzyme kinetics, spectroscopic assays, molecular docking, and simulations were performed. We observed all these PCs have significant docking scores and preferable interaction with the active site of the digestive enzymes, resulting in the reduction of enzyme activity. The enzyme-substrate binding mechanism was determined using the Lineweaver Burk plot, indicating that the inhibition occurred competitively. Among four PCs diosmin and morin has the highest interaction energy over digestive enzymes with IC50 value of 1.13 ± 0.0047 and 1.086 ± 0.0131 µM. Kinetic studies show that selected PCs inhibited pepsin, trypsin, and chymotrypsin competitively and inhibited amylase in a non-competitive manner, especially by 2',3',4'-trihydroxychalcone. This study offers insights into the mechanisms by which the selected PCs inhibit the enzymes and has the potential to enhance the application of curcumin, diosmin, morin, and 2',3',4'-trihydroxychalcone as natural inhibitors of digestive enzymes.


Asunto(s)
Curcumina , Diosmina , Simulación del Acoplamiento Molecular , Pepsina A/metabolismo , Tripsina/metabolismo , Curcumina/farmacología , Cinética , Polifenoles/farmacología , Flavonoides/farmacología , Flavonoides/química , alfa-Amilasas/metabolismo , alfa-Glucosidasas/metabolismo
8.
J Biochem Mol Toxicol ; 38(1): e23520, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37632306

RESUMEN

Butylparaben (BP), a common chemical preservative in cosmetic and pharmaceutical products, has been known to induce oxidative stress and disrupt endocrine function in humans. In contrast, morin, a flavonoid derived from the Moraceae family, exhibits diverse pharmacological properties, including anti-inflammatory and antioxidant. Despite this, the protective role of morin against oxidative stress-induced damage in pancreatic islets remains unclear. Therefore, in this study, we aimed to investigate the potential protective mechanism of morin against oxidative stress-induced damage caused by BP in zebrafish larvae. To achieve this, we exposed the zebrafish larvae to butylparaben (2.5 mg/L) for 5 days, leading to increased oxidative stress and apoptosis in ß-cells. However, our compelling findings revealed that pretreatment with various concentrations of morin effectively reduced mortality and mitigated apoptosis and lipid peroxidation in ß-cells induced by BP exposure. In addition, zebrafish larvae exposed to BP for 5 days exhibited evident ß-cell damage. However, the pretreatment with morin showed promising effects by promoting ß-cell proliferation and lowering glucose levels. Furthermore, gene expression studies indicated that morin pretreatment normalized PEPCK expression while increasing insulin expression in BP-exposed larvae. In conclusion, our findings highlight the potential of morin as a protective agent against BP-induced ß-cell damage in zebrafish larvae. The observed improvements in oxidative stress, apoptosis, and gene expression patterns support the notion that morin could be further explored as a therapeutic candidate to counteract the detrimental effects of BP exposure on pancreatic ß-cells.


Asunto(s)
Flavonas , Insulina , Parabenos , Pez Cebra , Animales , Humanos , Larva , Antioxidantes/farmacología , Estrés Oxidativo , Flavonoides/farmacología , Flavonoides/uso terapéutico
9.
Int J Pharm ; 651: 123749, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38159587

RESUMEN

Polycystic ovary syndrome (PCOS), a prevalent endocrine disorder in women of reproductive age, is linked to hormonal imbalances and oxidative stress. Our study investigates the regenerative potential of apigenin (AP, hydrophobic) and ascorbic acid (AC, hydrophilic) encapsulated within poly (allylamine hydrochloride) and dextran sulfate (PAH/DS) hollow microcapsules for PCOS. These microcapsules, constructed using a layer-by-layer (LbL) assembly, are found to be 4 ± 0.5 µm in size. Our research successfully demonstrates the co-encapsulation of AP and AC in a single PAH/DS system with high encapsulation efficiency followed by successful release at physiological conditions by CLSM investigations. In vitro tests with testosterone-treated CHO cells reveal that the dual-drug-loaded PAH/DS capsules effectively reduce intracellular ROS levels and apoptosis and offering protection. In an in-vivo zebrafish model, these capsules demonstrate active biodistribution to targeted ovaries and reduce testosterone levels through radical scavenging. Histopathological examinations show that the injected dual-drug-loaded PAH/DS microcapsules assist in the development of ovarian follicles in testosterone-treated zebrafish. Hence, this dual-drug-loaded system, capable of co-encapsulating two natural compounds, effectively interacts with ovarian cells, reducing cellular damage and normalizing PCOS conditions.


Asunto(s)
Síndrome del Ovario Poliquístico , Animales , Cricetinae , Femenino , Humanos , Polielectrolitos , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Apigenina , Pez Cebra , Cápsulas/química , Ácido Ascórbico , Distribución Tisular , Cricetulus , Testosterona
10.
Tissue Cell ; 85: 102259, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37922675

RESUMEN

BACKGROUND: Cigarette smoke exposure poses significant health risks, including oxidative stress, inflammation, tissue damage, and neurodegenerative diseases. Luteolin, a natural flavonoid known for its antioxidant and anti-inflammatory properties, is of interest in countering these effects. AIM: This study aims to assess luteolin's protective potential against cigarette smoke extract (CSE) in adult zebrafish. MATERIALS AND METHODS: Adult zebrafish were exposed to CSE for 15 days, inducing smoke-related damage. Subsequent luteolin treatment assessed its impact. Evaluations included antioxidant enzymes (SOD, CAT), nitric oxide (NO), LDH activity (cellular damage), tissue integrity, fibrosis, amyloid plaque accumulation, and CSE component analysis via HPLC. KEY FINDINGS: CSE exposure heightened oxidative stress, reducing SOD and CAT activity and elevating NO levels, leading to cellular damage and tissue disruption, notably fibrosis and amyloid plaque accumulation. Inflammatory markers TNF-α and IL-1ß also increased. Luteolin treatment restored SOD and CAT activity, reduced LDH and NO activity, counteracting oxidative damage. It also mitigated fibrosis and reduced amyloid plaque deposition, preserving tissue integrity. Luteolin reduced TNF-α and IL-1ß levels and CSE components, displaying anti-inflammatory effects. SIGNIFICANCE: This study underscores luteolin's potential as a protective agent against cigarette smoke-induced harm in a zebrafish model.


Asunto(s)
Antioxidantes , Fumar Cigarrillos , Animales , Antioxidantes/farmacología , Pez Cebra , Luteolina/farmacología , Factor de Necrosis Tumoral alfa , Placa Amiloide , Antiinflamatorios/farmacología , Nicotiana/efectos adversos , Superóxido Dismutasa , Fibrosis
11.
Molecules ; 28(14)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37513223

RESUMEN

Diabetes Mellitus is a metabolic disease that leads to microvascular complications like Diabetic retinopathy (DR), a major cause of blindness worldwide. Current medications for DR are expensive and report multiple side effects; therefore, an alternative medication that alleviates the disease condition is required. An interventional approach targeting the vascular endothelial growth factor (VEGF) remains a treatment strategy for DR. Anti-VEGF medicines are being investigated as the main therapy for managing vision-threatening complications of DR, such as diabetic macular oedema. Therefore, this study investigated the effect of flavonoid naringenin (NG) from citrus fruits on inhibiting early DR in zebrafish. When exposed to 130 mM glucose, the zebrafish larvae developed a hyperglycaemic condition accompanied by oxidative stress, cellular damage, and lipid peroxidation. Similarly, when adult zebrafish were exposed to 4% Glucose, high glucose levels were observed in the ocular region and massive destruction in the retinal membrane. High glucose upregulated the expression of VEGF. In comparison, the co-exposure to NG inhibited oxidative stress and cellular damage and restored the glutathione levels in the ocular region of the zebrafish larvae. NG regressed the glucose levels and cellular damage along with an inhibition of macular degeneration in the retina of adult zebrafish and normalized the overexpression of VEGF as a promising strategy for treating DR. Therefore, intervention of NG could alleviate the domestication of alternative medicine in ophthalmic research.


Asunto(s)
Retinopatía Diabética , Pez Cebra , Animales , Pez Cebra/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factores de Crecimiento Endotelial Vascular/metabolismo , Retinopatía Diabética/metabolismo , Estrés Oxidativo , Glucosa/farmacología
12.
Microb Pathog ; 180: 106123, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37088400

RESUMEN

Pseudomonas aeruginosa (PA) is an opportunistic pathogen that causes healthcare-associated infection and high mortality in immunocompromised patients. It produces several virulence factors through quorum sensing (QS) mechanisms that is essential for subverting host immune system. Even front-line antibiotics are unable to control PA pathogenicity due to the emergence of antibiotic resistance. Luteolin is a naturally derived compound that has proven to be the effective drug to annihilate pathogens through quorum quenching mechanism. In this study, the protective effect of luteolin against the PA-mediated inflammation was demonstrated using zebrafish model. Luteolin protects zebrafish from PA infection and increases their survival rate. It was found that PA-mediated ROS, lipid peroxidation, and apoptosis were also significantly reduced in luteolin-treated zebrafish larvae. Open field test (OFT) reveals that luteolin rescued PA-infected zebrafish from retarded swimming behavior. Furthermore, luteolin increases SOD and CAT levels and decreases LDH and NO levels in PA-infected zebrafish compare to control group. Histological and gene expression analysis reveals that luteolin protects PA-infected zebrafish by decreasing gut inflammation and altering the expression of inflammatory (TNF-α, IL-1ß, IL-6) and antioxidant markers (iNOS, SOD, CAT). Thus, luteolin was found to have dual effect in protecting PA-infected zebrafish by decreasing virulence factors production in PA and stimulating host immune system. This is the first study demonstrating the protective effect of luteolin using animal model. Hence, luteolin could be used as a future therapeutic drug to control multi-drug resistant PA.


Asunto(s)
Infecciones por Pseudomonas , Factores de Virulencia , Animales , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Pseudomonas aeruginosa , Luteolina/farmacología , Pez Cebra , Percepción de Quorum , Inflamación , Superóxido Dismutasa/metabolismo , Antibacterianos/metabolismo , Biopelículas , Proteínas Bacterianas/metabolismo , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/patología
13.
J Appl Microbiol ; 134(4)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37002541

RESUMEN

AIM: The aims of this study were to explore the antagonistic potential of siderophore-producing Bacillus subtilis (CWTS 5) for the suppression of Ralstonia solanacearum and to explore the mechanisms of inhibition by FTIR, LC-MS, and whole genome analysis. METHODS AND RESULTS: A siderophore-producing B. subtilis (CWTS 5) possessing several plant growth-promoting properties such as IAA and ACC deaminase production, phosphate solubilization, and nitrogen fixation was assessed for its inhibitory effect against R. solanacearum, and its mechanisms were explored by in vitro and in vivo analyses. The active secondary metabolites in the siderophore extracts were identified as 2-deoxystreptamine, miserotoxin, fumitremorgin C, pipercide, pipernonaline, gingerone A, and deoxyvasicinone by LC-MS analysis. The Arnow's test and antiSMASH analysis confirmed the presence of catecholate siderophores, and the functional groups determined by FTIR spectroscopy confirmed the presence of secondary metabolites in the siderophore extract possessing antagonistic effect. The complete genome sequence of CWTS 5 revealed the gene clusters responsible for siderophore, antibiotics, secondary metabolite production, and antibacterial and antifungal metabolites. Furthermore, the evaluation of CWTS 5 against R. solanacearum in pot studies demonstrated 40.0% reduced disease severity index (DSI) by CWTS 5, methanolic extract (DSI-26.6%), ethyl acetate extract (DSI-20.0%), and increased plant growth such as root and shoot length, wet weight and dry weight of Solanum lycopersicum L. owing to its antagonistic potential. This genomic insight will support future studies on the application of B. subtilis as a plant growth promoter and biocontrol agent against R. solanacearum for bacterial wilt management. CONCLUSION: The results of this study revealed that B. subtilis (CWTS 5) possesses multiple mechanisms that control R. solanacearum, reduce disease incidence, and improve S. lycopersicum growth.


Asunto(s)
Bacillus subtilis , Ralstonia solanacearum , Bacillus subtilis/fisiología , Ralstonia solanacearum/genética , Sideróforos , Plantas , Antibacterianos , Secuenciación Completa del Genoma , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología
14.
Sci Total Environ ; 864: 160968, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36549541

RESUMEN

Natural toxicants, particularly methoxy phenols (MPs) generated by wildfire lignin, can accumulate in the environment, and cause serious health hazards in living organisms. Although the toxicity of MPs such as guaiacol and catechol has recently been described, there is minimal evidence of ecotoxicological effects of syringol. As a result, this study focuses on determining the toxicity by evaluating the cytotoxic and teratogenic effects of syringol in vitro and in vivo in human embryonic kidney (HEK-293) cells and zebrafish embryos, respectively. The ecotoxicity of syringol was predicted to be 63.8 mg/L using the ECOSAR (ECOlogical Structure Activity Relationship) prediction tool, and molecular docking analysis was used to determine the interaction and binding affinities of syringol with human apoptotic proteins in silico. In HEK-293 cells, exposure of syringol (0.5-2 mg/L) has induced cytotoxicity in a concentration-dependent manner. In zebrafish larvae, exposure of syringol (0.5-2 mg/L) has induced dose-dependent embryo toxic effects (or growth abnormalities such as yolk sac edema, pericardial edema, skeletal abnormality, and hyperemia), and changes in growth morphometrics (head height, eye, yolk sac, and pericardial area, heart rate) in particular, the heart rate of larvae was found to be significantly decreased (p<0.001). After a 4-day experimental trial, the accumulated concentration of syringol in zebrafish larvae was confirmed both qualitatively (HPLC-MS - High Performance Liquid Chromatography-Mass spectrometry) and quantitatively (LC-QTOF-HRMS - Liquid Chromatography-Quadrupolar Time of Flight-High Resolution Mass spectrometry). The craniofacial abnormalities induced by syringol exposure (0.5-2 mg/L) were detected as anomalies in cartilaginous development and locomotor deficits using alcian blue staining and locomotor analyses, respectively. Significant increase in oxidative stress parameters (including reactive oxygen species generation, lipid peroxidation, superoxide dismutase, catalase, lactate dehydrogenase and nitric oxide production) (p<0.001) and substantial decrease in glutathione levels were observed (p<0.05) in syringol exposed zebrafish larvae through enzymatic analysis. Additionally, through acridine orange staining and gene expression analyses, syringol (2 mg/L) was found to activate apoptosis in zebrafish larvae. Considering the cytotoxic, embryotoxic (teratogenicity), and oxidative stress-related apoptotic effects of syringol in the zebrafish model, syringol has the potential to emerge as a potent environmental toxicant posing serious health hazards in many living systems; however, further research on its toxicological effects on the actual ecosystem and in higher animal models is required to confirm its consequences.


Asunto(s)
Teratogénesis , Incendios Forestales , Animales , Humanos , Pez Cebra , Ecosistema , Células HEK293 , Simulación del Acoplamiento Molecular , Embrión no Mamífero , Estrés Oxidativo , Larva
15.
Med Oncol ; 39(12): 251, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36224472

RESUMEN

Over the last few decades, the number of people diagnosed with cancer has increased dramatically every year, making it a major cause of mortality today. Colon cancer is the third most common cancer worldwide, and the second in mortality rate. Current cancer treatment fails to treat colon cancer completely due to the remains of Cancer Stem Cells (CSCs). Morin flavonoid present in figs (Ficus carica) and other plant sources, was found to have an anti-proliferative effect on the colon cancer model and cell line, but it is not studied for its effect on the colon CSCs. In this study, we have tested the potency of morin to inhibit CSCs. We found that morin has significantly reduced colon cancer cell proliferation, colony formation, migration, and colonospheroid formation in a dose-dependent manner. Pumilio-1 (PUM1) has been shown to play an important role in colon CSCs maintenance. We found that morin has a good binding affinity with PUM1 protein with one hydrophobic and two hydrogen bond interactions. Further, the immunofluorescence results have also shown a reduction in PUM1 expression in colon cancer cell lines after morin treatment. CD133 is overexpressed in colon CSCs and morin treatment has reduced the CD133 expression in HCT116 and CT26 colon cancer cell lines. Our research outcome has explored the anti-cancer stem cell potency of morin via targeting the PUM1 protein and further reducing the colon spheroids formation and reducing the CD133 expression in colon cancer cells.


Asunto(s)
Neoplasias del Colon , Células Madre Neoplásicas , Proliferación Celular , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Flavonas , Flavonoides/farmacología , Humanos , Células Madre Neoplásicas/metabolismo , Proteínas de Unión al ARN/metabolismo
16.
Neurosci Lett ; 790: 136889, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36179902

RESUMEN

Exogenous toxicants cause oxidative stress and damage to brain cells, resulting in inflammation. Neuroinflammation is important in the pathobiology of various neurological illnesses, including Alzheimer's disease (AD). In this context, Bisphenol A (BPA), a common toxin, causes oxidative damage and has been linked to neurological problems. An O-methylated isoflavone known as Biochanin A (5,7-dihydroxy-4'-methoxy-isoflavone, BCA) is considered to be a phytoestrogen, which is abundant in some legume plants and soy which have preventive effects against cancer, osteoporosis, menopausal symptoms and oxidative stress. However, the mechanism by which BCA protected the prenatal neurological stress are not known. So that, in this study we investigated the BCA neuroprotective effect against BPA-induced neuroinflammation in zebrafish embryo models. For this study, fertilized zebrafish embryos are exposed to BPA (1 µM) with or without BCA. Our finding suggested that BCA co-exposure prevented the depletion of antioxidant defense enzymes by BPA and reduced the production of intracellular ROS production, superoxide anion (O2-), lipid peroxidation (LPO), lactate dehydrogenase (LDH) and nitric oxide (NO) levels in the head that aided in safeguarding neuronal development. Baseline locomotion was rendered and a total distance was calculated to assess the motor function. Exposure to BCA increased acetylcholinestrase (AChE) and improved motor neuron functions. It also reduced the pro-inflammatory response expression and prevented neuroinflammation. Our study suggests that BCA has a positive role in the attenuation or amelioration of neuronal oxidative damage and locomotory behaviour induced by BPA.


Asunto(s)
Fármacos Neuroprotectores , Pez Cebra , Animales , Pez Cebra/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/metabolismo , Antioxidantes/farmacología , Especies Reactivas de Oxígeno/metabolismo , Fitoestrógenos/farmacología , Fitoestrógenos/metabolismo , Superóxidos/metabolismo , Superóxidos/farmacología , Óxido Nítrico/metabolismo , Compuestos de Bencidrilo/toxicidad , Estrés Oxidativo , Genisteína/farmacología , Locomoción , Lactato Deshidrogenasas/metabolismo
17.
Artículo en Inglés | MEDLINE | ID: mdl-36087706

RESUMEN

Copper sulfate (CuSO4) as industrial effluent is intentionally or unintentionally released into water bodies and accumulates in the fish. Because of its numerous applications, CuSO4 can be hazardous to non-target creatures, producing direct alterations in fish habitats. Acacetin is a flavonoid present in all vascular plants that are extensively dispersed in plant pigments and responsible for many natural hues. However, the impact of acacetin on mitigating the toxic effect of CuSO4 in the in-vivo conditions is not known. The toxicity of acacetin was determined by measuring the survival, deformities and heart rate after treatment with various concentrations to larvae. The protective effect of acacetin was also observed in CuSO4 exposed zebrafish larvae by reducing malformation, mortality rate and oxidative stress. Meanwhile, the acacetin-protected larvae from CuSO4 effects through the molecular mechanism by suppressing pro-inflammatory genes (COX-2, TNF-α and IL-1) and upregulating antioxidant genes (GPx, GST and GR). Overall, our findings suggest that acacetin can act as a protective barrier against CuSO4-induced inflammation in an in-vivo zebrafish larval model.


Asunto(s)
Sulfato de Cobre , Flavonas , Animales , Antiinflamatorios/farmacología , Antioxidantes/metabolismo , Cobre/farmacología , Sulfato de Cobre/toxicidad , Ciclooxigenasa 2/farmacología , Flavonas/farmacología , Glutatión/metabolismo , Interleucina-1/farmacología , Larva , Oxidación-Reducción , Estrés Oxidativo , Factor de Necrosis Tumoral alfa/genética , Agua , Pez Cebra/metabolismo
18.
Inflammopharmacology ; 30(5): 1853-1870, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35639234

RESUMEN

Eleusine coracana (L.) Gaertn (E. coracana) is one of the highest consuming food crops in Asia and Africa. E. coracana is a plant with several medicinal values including anti-ulcerative, anti-diabetic, anti-viral and anti-cancer properties. However, the anti-inflammatory property of E. coracana remains to be elucidated. Therefore, the objective of present study was to investigate the potential in isolated molecule from E. coracana via a combination of in vitro, in vivo and in silico methods. In this study, we have isolated, purified and characterized an anti-inflammatory molecule from E. coracana bran extract known as syringol. Purification of syringol was accomplished by combination of GC-MS and RP-HPLC techniques. Syringol significantly inhibited the enzymes activity of sPLA2 (IC50 = 3.00 µg) and 5-LOX (IC50 = 0.325 µg) in vitro. The inhibition is independent of substrate concentration, calcium ion concentration and was irreversible. Syringol interacts with purified sPLA2 enzymes as evidenced by fluorescence and molecular docking studies. Further, the syringol molecule dose dependently inhibited the development of sPLA2 and λ-carrageenan induced edema. Furthermore, syringol decreases the expression of cPLA2, COX-2, IκBα, p38 and MPO in edematous tissues as demonstrated by western blots. These studies revealed that syringol isolated from E. coracana bran may develop as a potent anti-inflammatory molecule.


Asunto(s)
Eleusine , Fosfolipasas A2 Secretoras , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Calcio/metabolismo , Carragenina/farmacología , Ciclooxigenasa 2/metabolismo , Regulación hacia Abajo , Edema/tratamiento farmacológico , Edema/metabolismo , Eleusine/metabolismo , Ratones , Simulación del Acoplamiento Molecular , Inhibidor NF-kappaB alfa/metabolismo , Fosfolipasas A2 Secretoras/metabolismo , Fosfolipasas A2 Secretoras/uso terapéutico , Extractos Vegetales/uso terapéutico , Pirogalol/análogos & derivados
19.
Artículo en Inglés | MEDLINE | ID: mdl-35523404

RESUMEN

This study investigates the therapeutic activity of daidzein, an isoflavone that occurs naturally in plants and herbs, against gentamicin-induced nephrotoxicity in Madin-Darby canine kidney (MDCK) cells in-vitro and zebrafish model in-vivo. The in-vitro studies revealed that daidzein protected MDCK cells from gentamicin-induced inflammation by suppressing oxidative stress and apoptosis. The zebrafish were divided into groups and injected with gentamicin (140 mg/mL) to induce nephrotoxic conditions. After injection, renal dysfunction, nitric oxide production, antioxidant consumption, exaggerated apoptosis, and inflammation were all observed in the zebrafish model. We also observed that during kidney inflammation in zebrafish, pro-inflammatory cytokines such as cyclooxygenase (COX-2), tumor necrosis factor (TNF-α), and interleukin-1ß (IL-1ß) are upregulated. Furthermore, daidzein treatment after gentamicin injection showed a strong protective anti-inflammatory effect. Daidzein activity was associated with an increase in antioxidant biomarkers such as superoxide dismutase (SOD) and glutathione reductase (GSH), whereas lipid peroxidation (LPO) and nitric oxide (NO) production were decreased in a dose-dependent factor. Moreover, histopathological alteration caused by gentamicin in zebrafish kidneys was normalized due to daidzein treatment. Daidzein also downregulated the pro-inflammatory cytokines gene expression in gentamicin-induced kidney inflammation in zebrafish. These results revealed that daidzein could potentially prevent nephrotoxic conditions through pro-inflammatory cytokines inhibition and its antioxidant property.


Asunto(s)
Gentamicinas , Isoflavonas , Animales , Antioxidantes/metabolismo , Citocinas/genética , Citocinas/metabolismo , Perros , Gentamicinas/metabolismo , Gentamicinas/toxicidad , Inflamación/tratamiento farmacológico , Isoflavonas/metabolismo , Isoflavonas/farmacología , Riñón , Óxido Nítrico/metabolismo , Estrés Oxidativo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Pez Cebra/metabolismo
20.
Mol Biol Rep ; 49(6): 4269-4279, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35182324

RESUMEN

BACKGROUND: The development of diabetic nephropathy is aided by the presence of oxidative stress. Morin, a natural flavonoid molecule, has been shown to have antioxidant and anti-diabetic properties. However, little is known about the mechanism of its protective effect in diabetic nephropathy pathogenesis caused by oxidative stress. METHODS: Using Madin-Darby canine kidney (MDCK) cells as a working model, the current study investigates the detailed mechanism of morin's beneficial action. In hydrogen peroxide-induced oxidative stressed MDCK cells, there was a considerable rise in intracellular ROS and decreased antioxidant enzyme levels. RESULTS: Morin has a higher binding affinity for the antioxidant receptor; according to in silico study using molecular docking and ADMET, it is predicted to be an orally active molecule. While morin administration increased SOD and CAT activity in oxidative stress-induced MDCK cells, it also reduced mitochondrial oxidative stress and apoptosis. Furthermore, the present study discovered the molecular mechanism through which morin reduced oxidative stress in MDCK cells by upregulating antioxidant enzyme molecules including GST, GPx, and GCS. CONCLUSION: These findings suggest that morin reduces H2O2-induced oxidative stress, reduces DNA oxidative damage, and prevents the depletion of antioxidant genes in MDCK cells.


Asunto(s)
Nefropatías Diabéticas , Peróxido de Hidrógeno , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Apoptosis , Daño del ADN , Perros , Flavonoides/farmacología , Peróxido de Hidrógeno/farmacología , Células de Riñón Canino Madin Darby , Simulación del Acoplamiento Molecular , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA