Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Biomolecules ; 13(10)2023 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-37892208

RESUMEN

The androgens/androgen receptor (AR) axis is the main therapeutic target in prostate cancer (PCa). However, while initially responsive, a subset of tumors loses AR expression through mechanisms putatively associated with epigenetic modifications. In this study, we assessed the link between the presence of CpG methylation in the 5'UTR and promoter regions of AR and loss of AR expression. Hence, we characterized and compared the methylation signature at CpG resolution of these regulatory regions in vitro, both at basal levels and following treatment with 5-aza-2-deoxycytidine (DAC) alone, or in combination with Trichostatin A (TSA). Our results showed heterogeneity in the methylation signature of AR negative cell lines and pinpointed the proximal promoter region as the most consistently methylated site in DU-145. Furthermore, this region was extremely resistant to the demethylating effects of DAC and was only significantly demethylated upon concomitant treatment with TSA. Nevertheless, no AR re-expression was detected at the mRNA or protein level. Importantly, after treatment, there was a significant increase in repressive histone marks at AR region 1 in DU-145 cells. Altogether, our data indicate that AR region 1 genomic availability is crucial for AR expression and that the inhibition of histone methyltransferases might hold promise for AR re-expression.


Asunto(s)
Andrógenos , Neoplasias de la Próstata , Masculino , Humanos , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Metilación de ADN , Línea Celular Tumoral , Regiones Promotoras Genéticas , Neoplasias de la Próstata/metabolismo , Epigénesis Genética/genética , Regulación Neoplásica de la Expresión Génica
2.
Epigenetics ; 17(5): 564-588, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34130596

RESUMEN

Epigenome editing consists of fusing a predesigned DNA recognition unit to the catalytic domain of a chromatin modifying enzyme leading to the introduction or removal of an epigenetic mark at a specific locus. These platforms enabled the study of the mechanisms and roles of epigenetic changes in several research domains such as those addressing pathogenesis and progression of cancer. Despite the continued efforts required to overcome some limitations, which include specificity, off-target effects, efficacy, and longevity, these tools have been rapidly progressing and improving.Since prostate cancer is characterized by multiple genetic and epigenetic alterations that affect different signalling pathways, epigenetic editing constitutes a promising strategy to hamper cancer progression. Therefore, by modulating chromatin structure through epigenome editing, its conformation might be better understood and events that drive prostate carcinogenesis might be further unveiled.This review describes the different epigenome engineering tools, their mechanisms concerning gene's expression and regulation, highlighting the challenges and opportunities concerning prostate cancer research.


Asunto(s)
Edición Génica , Neoplasias de la Próstata , Sistemas CRISPR-Cas , Cromatina , Metilación de ADN , Epigénesis Genética , Humanos , Masculino , Neoplasias de la Próstata/genética
3.
Biomedicines ; 9(8)2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34440180

RESUMEN

Advanced prostate cancers frequently develop resistance to androgen-deprivation therapy with serious implications for patient survival. Considering their importance in this type of neoplasia, epigenetic modifications have drawn attention as alternative treatment strategies. The aim of this study was to assess the antitumoral effects of the combination of hydralazine, a DNA methylation inhibitor, with enzalutamide, an antagonist of the androgen receptor, in prostate cancer cell lines. Several biological parameters, such as cell viability, proliferation, DNA damage, and apoptosis, as well as clonogenic and invasive potential, were evaluated. The individual treatments with hydralazine and enzalutamide exerted growth-inhibitory effects in prostate cancer cells and their combined treatment displayed synergistic effects. The combination of these two drugs was very effective in decreasing malignant features of prostate cancer and may become an alternative therapeutic option for prostate cancer patient management.

4.
Pharmaceuticals (Basel) ; 14(7)2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34358096

RESUMEN

Among the well-established alterations contributing to prostate cancer (PCa) pathogenesis, epigenetics is an important player in its development and aggressive disease state. Moreover, since no curative therapies are available for advanced stage disease, there is an urgent need for novel therapeutic strategies targeting this subset of patients. Thus, we aimed to evaluate the combined antineoplastic effects of DNA methylation inhibitor hydralazine and histone deacetylase inhibitors panobinostat and valproic acid in several prostate cell lines. The effect of these drugs was assessed in four PCa (LNCaP, 22Rv1, DU145 and PC-3) cell lines, as well as in non-malignant epithelial (RWPE-1) and stromal (WPMY-1) cell lines, using several assays to evaluate cell viability, apoptosis, proliferation, DNA damage and clonogenic potential. We found that exposure to each epidrug separately reduced viability of all PCa cells in a dose-dependent manner and that combined treatments led to synergic growth inhibitory effects, impacting also on colony formation, invasion, apoptotic and proliferation rates. Interestingly, antitumoral effects of combined treatment were particularly expressive in DU145 cells. We concluded that hydralazine and panobinostat attenuate malignant properties of PCa cells, constituting a potential therapeutic tool to counteract PCa progression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA