Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
2.
Cureus ; 16(5): e60083, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38860073

RESUMEN

Knowledge of anatomical variability is extremely important in order to better understand the etiology of pain, if present, or to avoid iatrogenic consequences. Sometimes the anatomical "anomalies" have the same anamnesis but different causes. For example, sciatic neuralgia may be caused by a herniated disc or it may have a different origin. The sciatic nerve (SN), also known as the ischial nerve, is the widest in the human body. This huge peripheral nerve originates from the roots of the lumbosacral plexus (L4-S3) and passes through the great sciatic foramen, under the piriformis muscle (PM). However, there is much variability in the pattern of SNs about the muscle, which has been known since the first half of the 20th century. In the present study, we describe six different case reports of anatomical variations of the SN and its interplay with the PM. The observations were made during dissection classes at the ICLO Teaching and Research Centre (Verona, Italy), on both male and female cadavers aged between 58 and 84 years. The SN was reported as a single and divided nerve into the tibial nerve (TN) and the common peroneal nerve (CPN), passing alone above, below, or between the PM. However, the two parts of the SN may also interact with the PM in different ways, adding to the anatomical variability. A thorough knowledge of the anatomical variations in any part of the human body is extremely important. The various techniques used, from imaging to autopsy or surgery, are also useful in the SN pathway. Thus, the anatomical features and the understanding of each variation are useful for a correct approach that can lead to an effective and correct treatment with a favorable outcome.

4.
Anat Histol Embryol ; 52(6): 983-988, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37635393

RESUMEN

Anatomical variability in the human body is not as rare as was previously hypothesised. Indeed, as recently reviewed, the term 'norm' in anatomy can be considered an approximation. Thus, anatomical variations occur quite often, as largely demonstrated during non-invasive diagnosis, surgical intervention, or post mortem investigations. In the present study, we describe different anatomical variations in both the right and left lungs derived from cadavers of different ethnicities. The analysed organs were collected during dissection, and accessory lobes and fissures were observed in both the right and left lungs. Moreover, a horizontal fissure was missing from the right lung, resulting in only two lobes. Since lung anatomical variability is common in clinical practice and preclinical imaging studies can miss different morphologies, a deep and accurate knowledge of the anatomical variations of the lung is of extreme importance to avoid difficulties or changes during the surgical procedure.


Asunto(s)
Cuerpo Humano , Pulmón , Humanos , Animales , Pulmón/anatomía & histología , Cadáver , Autopsia/veterinaria , Disección/veterinaria
5.
Pain ; 164(11): 2581-2595, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37556385

RESUMEN

ABSTRACT: Neurotoxicity of chemotherapeutics involves peculiar alterations in the structure and function, including abnormal nerve signal transmission, of both the peripheral and central nervous system. The lack of effective pharmacological approaches to prevent chemotherapy-induced neurotoxicity necessitates the identification of innovative therapies. Recent evidence suggests that repeated treatment with the pentacyclic pyridoindole derivative DDD-028 can exert both pain-relieving and glial modulatory effects in mice with paclitaxel-induced neuropathy. This work is aimed at assessing whether DDD-028 is a disease-modifying agent by protecting the peripheral nervous tissues from chemotherapy-induced damage. Neuropathy was induced in animals by paclitaxel injection (2.0 mg kg -1 i.p). DDD-028 (10 mg kg -1 ) and the reference drug, pregabalin (30 mg kg -1 ), were administered per os daily starting concomitantly with the first injection of paclitaxel and continuing 10 days after the end of paclitaxel treatment. The behavioural tests confirmed the antihyperalgesic efficacy of DDD-028 on paclitaxel-induced neuropathic pain. Furthermore, the electrophysiological analysis revealed the capacity of DDD-028 to restore near-normal sensory nerve conduction in paclitaxel-treated animals. Histopathology evidence indicated that DDD-028 was able to counteract effectively paclitaxel-induced peripheral neurotoxicity by protecting against the loss of intraepidermal nerve fibers, restoring physiological levels of neurofilament in nerve tissue and plasma, and preventing morphological alterations occurring in the sciatic nerves and dorsal root ganglia. Overall, DDD-028 is more effective than pregabalin in preventing chemotherapy-induced neurotoxicity. Thus, based on its potent antihyperalgesic and neuroprotective efficacy, DDD-028 seems to be a viable prophylactic medication to limit the development of neuropathies consequent to chemotherapy.


Asunto(s)
Antineoplásicos Fitogénicos , Antineoplásicos , Neuralgia , Ratones , Animales , Neuroprotección , Pregabalina/uso terapéutico , Paclitaxel/toxicidad , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Neuralgia/patología , Nervio Ciático/patología , Antineoplásicos/toxicidad , Ganglios Espinales/patología , Antineoplásicos Fitogénicos/farmacología
7.
Cells ; 12(1)2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36611987

RESUMEN

With the recent advances in medicine, human life expectancy is increasing; however, the extra years of life are not necessarily spent in good health or free from disability, resulting in a significantly higher incidence of age-associated pathologies. Among these disorders, neurodegenerative diseases have a significant impact. To this end, the presence of the protective blood-brain barrier (BBB) represents a formidable obstacle to the delivery of therapeutics. Thus, this makes it imperative to define strategies to bypass the BBB in order to successfully target the brain with the appropriate drugs. It has been demonstrated that targeting the BBB by ultrasound (US) can transiently make this anatomical barrier permeable and in so doing, allow the delivery of therapeutics. Thus, our aim was to carry out an in depth in vitro molecular and morphological study on the effects of US treatment on the BBB. The rat brain endothelial (RBE4) cell line was challenged with exposure to 12 MHz diagnostic US treatment for 10, 20, and 30 min. Cell viability assays, Western blotting analysis on the endoplasmic reticulum (ER), and oxidative stress marker evaluation were then performed, along with cytological and immunofluorescence staining, in order to evaluate the effects of US on the intercellular spaces and tight junction distribution of the brain endothelial cells. We observed that the US treatment exerted no toxic effects on either RBE4 cell viability or the upregulation/dislocation of the ER and oxidative stress marker (GRP78 and cytochrome C, respectively). Further, we observed that the application of US induced an increase in the intercellular spaces, as shown by Papanicolaou staining, mainly due to the altered distribution of the tight junction protein zonula occludens-1 (ZO-1). This latter US-dependent effect was transient and disappeared 20 min after the removal of the stimulus. In conclusion, our results show that US induces a transient alteration of the BBB, without altering the intracellular signaling pathways such as the ER and oxidative stress that could potentially be toxic for endothelial cells. These results suggested that US treatment could represent a potential strategy for improving drug delivery to the brain.


Asunto(s)
Barrera Hematoencefálica , Células Endoteliales , Ratas , Animales , Humanos , Barrera Hematoencefálica/patología , Células Endoteliales/metabolismo , Encéfalo/metabolismo , Línea Celular , Uniones Estrechas/metabolismo
8.
Sci Rep ; 12(1): 20712, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36456812

RESUMEN

Galactic Cosmic Rays (GCRs) are charged particles, originating from galactic and/or extra-galactic Supernova Remnants (SNR), that continuously permeate the Heliosphere. The GCRs are modulated in the heliosphere by convection by solar wind (SW), drift via gradients and curvatures in the Heliospheric Magnetic Field (HMF), diffusion from fluctuations in the HMF, and adiabatic cooling in the expanding SW. An improved understanding of their modulation is imperative as studies on the variations in solar activity levels and solar eruptions in the past rely heavily on the relationship between their modulation and formation of the secondary particles in the Earth's atmosphere. Here, for the first time, we utilize an AI method, Light Gradient Boosting Machines (LightGBM), to investigate the nonlinear interplay among the modulation processes in different timescales. Our study indicates that the nonlinear interplay among the mechanisms responsible for the GCR modulation in the inner heliosphere are not limited to the scenario of "drift-dominated solar minimum" versus "diffusion-dominated solar maximum", instead they have dynamic behavior displaying variations in time and in timescales. This study also demonstrates the value of using AI methods to investigate non-linear physical processes in Space Physics in the era of big data.

9.
Front Nutr ; 9: 887378, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36118773

RESUMEN

Experimental evidence suggests that neuroinflammation is a key pathological event of many diseases affecting the nervous system. It has been well recognized that these devastating illnesses (e.g., Alzheimer's, Parkinson's, depression, and chronic pain) are multifactorial, involving many pathogenic mechanisms, reason why pharmacological treatments are unsatisfactory. The purpose of this study was to evaluate the efficacy of a vegetal mixture capable of offering a multiple approach required to manage the multifactoriality of neuroinflammation. A mixture composed of Zingiber officinale (150 mg kg-1), Echinacea purpurea (20 mg kg-1), and Centella asiatica (200 mg kg-1) was tested in a mouse model of systemic neuroinflammation induced by lipopolysaccharide (LPS, 1 mg kg-1). Repeated treatment with the vegetal mixture was able to completely counteract thermal and mechanical allodynia as reported by the Cold plate and von Frey tests, respectively, and to reduce the motor impairments as demonstrated by the Rota rod test. Moreover, the mixture was capable of neutralizing the memory loss in the Passive avoidance test and reducing depressive-like behavior in the Porsolt test, while no efficacy was shown in decreasing anhedonia as demonstrated by the Sucrose preference test. Finally, LPS stimulation caused a significant increase in the activation of glial cells, of the central complement proteins and of inflammatory cytokines in selected regions of the central nervous system (CNS), which were rebalanced in animals treated with the vegetal mixture. In conclusion, the vegetal mixture tested thwarted the plethora of symptoms evoked by LPS, thus being a potential candidate for future investigations in the context of neuroinflammation.

10.
Life (Basel) ; 12(8)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-36013365

RESUMEN

INTRODUCTION: For many years, anatomical studies have been conducted with a shattered view of the body. Although the study of the different apparatuses provides a systemic view of the human body, the reconstruction of the complex network of anatomical structures is crucial for the understanding of structural and functional integration. AIM: We used network analysis to investigate the connection between the whole-body osteo-myofascial structures of the human musculoskeletal system. MATERIALS AND METHODS: The musculoskeletal network was performed using the aNETomy® anatomical network with the implementation of the open-source software Cytoscape for data entry. RESULTS: The initial graph was applied with a network consisting of 2298 body parts (nodes) and 7294 links, representing the musculoskeletal system. Considering the same weighted and unweighted osteo-myofascial network, a different distribution was obtained, suggesting both a topological organization and functional behavior of the network structure. CONCLUSIONS: Overall, we provide a deeply detailed anatomical network map of the whole-body musculoskeletal system that can be a useful tool for the comprehensive understanding of every single structure within the complex morphological organization, which could be of particular interest in the study of rehabilitation of movement dysfunctions.

11.
Int J Mol Sci ; 23(11)2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35682907

RESUMEN

Neuropathy development is a major dose-limiting side effect of anticancer treatments that significantly reduces patient's quality of life. The inadequate pharmacological approaches for neuropathic pain management warrant the identification of novel therapeutic targets. Mitochondrial dysfunctions that lead to reactive oxygen species (ROS) increase, cytosolic Ca2+ imbalance, and lactate acidosis are implicated in neuropathic pain pathogenesis. It has been observed that in these deregulations, a pivotal role is played by the mitochondrial carbonic anhydrases (CA) VA and VB isoforms. Hence, preclinical studies should be conducted to assess the efficacy of two novel selenides bearing benzenesulfonamide moieties, named 5b and 5d, and able to inhibit CA VA and VB against paclitaxel-induced neurotoxicity in mice. Acute treatment with 5b and 5d (30-100 mg/kg, per os - p.o.) determined a dose-dependent and long-lasting anti-hyperalgesic effect in the Cold plate test. Further, repeated daily treatment for 15 days with 100 mg/kg of both compounds (starting the first day of paclitaxel injection) significantly prevented neuropathic pain development without the onset of tolerance to the anti-hyperalgesic effect. In both experiments, acetazolamide (AAZ, 100 mg/kg, p.o.) used as the reference drug was partially active. Moreover, ex vivo analysis demonstrated the efficacy of 5b and 5d repeated treatments in reducing the maladaptive plasticity that occurs to glia cells in the lumbar portion of the spinal cord and in improving mitochondrial functions in the brain and spinal cord that were strongly impaired by paclitaxel-repeated treatment. In this regard, 5b and 5d ameliorated the metabolic activity, as observed by the increase in citrate synthase activity, and preserved an optimal mitochondrial membrane potential (ΔΨ) value, which appeared depolarized in brains from paclitaxel-treated animals. In conclusion, 5b and 5d have therapeutic and protective effects against paclitaxel-induced neuropathy without tolerance development. Moreover, 5b and 5d reduced glial cell activation and mitochondrial dysfunction in the central nervous system, being a promising candidate for the management of neuropathic pain and neurotoxicity evoked by chemotherapeutic drugs.


Asunto(s)
Anhidrasas Carbónicas , Neuralgia , Animales , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/uso terapéutico , Anhidrasas Carbónicas/metabolismo , Humanos , Hiperalgesia , Ratones , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Paclitaxel/efectos adversos , Calidad de Vida
12.
Cells ; 11(10)2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35626683

RESUMEN

Cadmium (Cd) is a well-known occupational and environmental pollutant worldwide, and its toxicity is widely recognised. Cd is reported to increase the permeability of the blood-brain barrier (BBB) and to penetrate and accumulate in the brain. Although many lines of evidence show that Cd toxicity is induced by different mechanisms, one of the best known is the Cd-dependent production of reactive oxygen species (ROS). Zinc is a trace element known as coenzyme and cofactor for many antioxidant proteins, such as metallothioneins and superoxide dismutase enzymes. To date, very little is known about the role of Zn in preventing Cd-induced blood-brain barrier (BBB) alterations. The goal of this study was to test the Zn antioxidant capacity against Cd-dependent alterations in a rat brain endothelial cell line (RBE4), as an in vitro model for BBB. In order to mimic acute Cd poisoning, RBE4 cells were treated with CdCl2 30 µM for 24 h. The protective role of ZnCl2 (50 µM) was revealed by evaluating the cell viability, reactive oxygen species (ROS) quantification, cytochrome C distribution, and the superoxide dismutase (SOD) protein activity. Additionally, the effectiveness of Zn in counteracting the Cd-induced damage was investigated by evaluating the expression levels of proteins already known to be involved in the Cd signalling pathway, such as GRP78 (an endoplasmic reticulum (ER) stress protein), caspase3 pro- and cleaved forms, and BAX. Finally, we evaluated if Zn was able to attenuate the alterations of zonula occludens-1 (ZO-1), one of the tight-junction (TJ) proteins involved in the formation of the BBB. Our data clearly demonstrate that Zn, by protecting from the SOD activity impairment induced by Cd, is able to prevent the triggering of the Cd-dependent signalling pathway that leads to ZO-1 dislocation and downregulation, and BBB damage.


Asunto(s)
Cadmio , Zinc , Animales , Antioxidantes/metabolismo , Barrera Hematoencefálica/metabolismo , Cadmio/metabolismo , Cadmio/toxicidad , Ratas , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Zinc/metabolismo , Zinc/farmacología
13.
Biomed Pharmacother ; 148: 112693, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35149388

RESUMEN

The term tendinopathy indicates a wide spectrum of conditions characterized by alterations in tendon tissue homeostatic response and damage to the extracellular matrix. The current pharmacological approach involves the use of nonsteroidal anti-inflammatory drugs and corticosteroids often with unsatisfactory results, making essential the identification of new treatments. In this study, the pro-regenerative and protective effects of an aqueous fibroin solution (0.5-500 µg/mL) against glucose oxidase (GOx)-induced damage in rat tenocytes were investigated. Then, fibroin anti-hyperalgesic and protective actions were evaluated in two models of tendinopathy induced in rats by collagenase or carrageenan injection, respectively. In vitro, 5-10 µg/mL fibroin per se increased cell viability and reverted the morphological alterations caused by GOx (0.1 U/mL). Fibroin 10 µg/mL evoked proliferative signaling upregulating the expression of decorin, scleraxin, tenomodulin (p < 0.001), FGF-2, and tenascin-C (p < 0.01) genes. Fibroin enhanced the basal FGF-2 and MMP-9 protein concentrations and prevented their GOx-mediated decrease. Furthermore, fibroin positively modulated the production of collagen type I. In vivo, the peri-tendinous injection of fibroin (5 mg) reduced the development of spontaneous pain and hypersensitivity (p < 0.01) induced by the intra-tendinous injection of collagenase; the efficacy was comparable to that of triamcinolone. The pain-relieving action of fibroin (peri-tendinous) was confirmed in the model of tendinopathy induced by carrageenan (intra-tendinous) where this fibrous protein was also able to improve tendon matrix organization, normalizing the orientation of collagen fibers. In conclusion, the use of fibroin in tendinopathies is suggested taking advantage of its excellent mechanical properties, pain-relieving effects, and ability to promote tissue regeneration processes.


Asunto(s)
Fibroínas , Tendinopatía , Animales , Colagenasas/metabolismo , Fibroínas/efectos adversos , Fibroínas/metabolismo , Dolor/metabolismo , Ratas , Tendinopatía/inducido químicamente , Tendinopatía/tratamiento farmacológico , Tendinopatía/metabolismo , Tenocitos/metabolismo
14.
Medicina (Kaunas) ; 58(1)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35056445

RESUMEN

Background: The "classic" thyroid gland arterial vascularization takes into account two superior thyroid arteries (STA), two inferior thyroid arteries (ITA) and, occasionally, a thyroid ima artery (TIMA). The present review focuses on exploring the available data concerning thyroid gland arterial vascularization and its variations. Methods: Here, we analysed 49 articles from the last century, ranging from case reports to reviews concerning cadaver dissection classes, surgical intervention, and non-invasive techniques as well. Results: The harvested data clearly highlighted that: (i) the STA originates predominantly from the external carotid artery; (ii) the ITA is a branch of the thyrocervical trunk; and (iii) the TIMA is a very uncommon variant predominantly occurring to compensate for ITA absence. Conclusion: A systematic review of a highly vascularized organ is of great relevance during surgical intervention and, thus, the knowledge of normal anatomy and its modification is essential both for fact-finding and in surgery.


Asunto(s)
Arterias , Glándula Tiroides , Cadáver , Humanos , Neovascularización Patológica , Glándula Tiroides/cirugía
15.
Pain ; 163(5): 861-877, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-34393197

RESUMEN

ABSTRACT: Recent findings linked gastrointestinal disorders characterized by abdominal pain to gut microbiota composition. The present work aimed to evaluate the power of gut microbiota as a visceral pain modulator and, consequently, the relevance of its manipulation as a therapeutic option in reversing postinflammatory visceral pain persistence. Colitis was induced in mice by intrarectally injecting 2,4-dinitrobenzenesulfonic acid (DNBS). The effect of faecal microbiota transplantation from viscerally hypersensitive DNBS-treated and naive donors was evaluated in control rats after an antibiotic-mediated microbiota depletion. Faecal microbiota transplantation from DNBS donors induced a long-lasting visceral hypersensitivity in control rats. Pain threshold trend correlated with major modifications in the composition of gut microbiota and short chain fatty acids. By contrast, no significant alterations of colon histology, permeability, and monoamines levels were detected. Finally, by manipulating the gut microbiota of DNBS-treated animals, a counteraction of persistent visceral pain was achieved. The present results provide novel insights into the relationship between intestinal microbiota and visceral hypersensitivity, highlighting the therapeutic potential of microbiota-targeted interventions.


Asunto(s)
Microbioma Gastrointestinal , Dolor Visceral , Animales , Bacterias , Colon/patología , Trasplante de Microbiota Fecal , Ratones , Ratas , Dolor Visceral/tratamiento farmacológico
16.
Eur J Histochem ; 65(s1)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34755507

RESUMEN

Oxaliplatin is a third-generation chemotherapy drug mainly used for colorectal cancer treatment. However, it is also known to trigger neuropathy whose underlying neurobiological mechanisms are still under investigation and currently available treatments show limited efficacy. It is now established that neurons are not the only cell type involved in chronic pain and that glial cells, mainly astrocytes and microglia, are involved in the initiation and maintenance of neuropathy. Among all the pathogenetic factors involved in neuropathic pain, an oxaliplatin-dependent oxidative stress plays a predominant role. In our study, the antioxidant properties of magnesium (Mg), manganese (Mn) and zinc (Zn) salts were evaluated in order to counteract microglial activation induced by oxaliplatin. The antioxidant efficacy of these metals was evaluated by the means of molecular and morphological assays on the BV-2 microglial cell line. Our data clearly show that Mg, Mn and Zn are able to prevent oxaliplatin-dependent microglial alterations by reducing both oxidative and endoplasmic reticulum stress.


Asunto(s)
Antioxidantes/farmacología , Cloruros/farmacología , Cloruro de Magnesio/farmacología , Compuestos de Manganeso/farmacología , Oxaliplatino/toxicidad , Compuestos de Zinc/farmacología , Animales , Antígeno B7-2/metabolismo , Proteínas de Unión al Calcio/metabolismo , Línea Celular , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ratones , Proteínas de Microfilamentos/metabolismo , Microglía/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
17.
J Exp Clin Cancer Res ; 40(1): 320, 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34649573

RESUMEN

BACKGROUND: Neuropathic pain is a clinically relevant adverse effect of several anticancer drugs that markedly impairs patients' quality of life and frequently leads to dose reduction or therapy discontinuation. The poor knowledge about the mechanisms involved in neuropathy development and pain chronicization, and the lack of effective therapies, make treatment of chemotherapy-induced neuropathic pain an unmet medical need. In this context, the vascular endothelial growth factor A (VEGF-A) has emerged as a candidate neuropathy hallmark and its decrease has been related to pain relief. In the present study, we have investigated the role of VEGF-A and its receptors, VEGFR-1 and VEGFR-2, in pain signalling and in chemotherapy-induced neuropathy establishment as well as the therapeutic potential of receptor blockade in the management of pain. METHODS: Behavioural and electrophysiological analyses were performed in an in vivo murine model, by using selective receptor agonists, blocking monoclonal antibodies or siRNA-mediated silencing of VEGF-A and VEGFRs. Expression of VEGF-A and VEGFR-1 in astrocytes and neurons was detected by immunofluorescence staining and confocal microscopy analysis. RESULTS: In mice, the intrathecal infusion of VEGF-A (VEGF165 isoforms) induced a dose-dependent noxious hypersensitivity and this effect was mediated by VEGFR-1. Consistently, electrophysiological studies indicated that VEGF-A strongly stimulated the spinal nociceptive neurons activity through VEGFR-1. In the dorsal horn of the spinal cord of animals affected by oxaliplatin-induced neuropathy, VEGF-A expression was increased in astrocytes while VEGFR-1 was mainly detected in neurons, suggesting a VEGF-A/VEGFR-1-mediated astrocyte-neuron cross-talk in neuropathic pain pathophysiology. Accordingly, the selective knockdown of astrocytic VEGF-A by intraspinal injection of shRNAmir blocked the development of oxaliplatin-induced neuropathic hyperalgesia and allodynia. Interestingly, both intrathecal and systemic administration of the novel anti-VEGFR-1 monoclonal antibody D16F7, endowed with anti-angiogenic and antitumor properties, reverted oxaliplatin-induced neuropathic pain. Besides, D16F7 effectively relieved hypersensitivity induced by other neurotoxic chemotherapeutic agents, such as paclitaxel and vincristine. CONCLUSIONS: These data strongly support the role of the VEGF-A/VEGFR-1 system in mediating chemotherapy-induced neuropathic pain at the central nervous system level. Thus, treatment with the anti-VEGFR-1 mAb D16F7, besides exerting antitumor activity, might result in the additional advantage of attenuating neuropathic pain when combined with neurotoxic anticancer agents.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Animales , Anticuerpos Monoclonales/farmacología , Humanos , Masculino , Ratones , Transducción de Señal
18.
Cells ; 10(10)2021 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-34685520

RESUMEN

Persistent pain affecting patients with inflammatory bowel diseases (IBDs) is still very difficult to treat. Carbonic anhydrase (CA) represents an intriguing pharmacological target considering the anti-hyperalgesic efficacy displayed by CA inhibitors in both inflammatory and neuropathic pain models. The aim of this work was to evaluate the effect of inhibiting CA IV, particularly when expressed in the gut, on visceral pain associated with colitis induced by 2,4-di-nitrobenzene sulfonic acid (DNBS) in rats. Visceral sensitivity was assessed by measuring animals' abdominal responses to colorectal distension. Repeated treatment with the selective CA IV inhibitors AB-118 and NIK-67 effectively counteracted the development of visceral pain induced by DNBS. In addition to pain relief, AB-118 showed a protective effect against colon damage. By contrast, the anti-hyperalgesic activity of NIK-67 was independent of colon healing, suggesting a direct protective effect of NIK-67 on visceral sensitivity. The enzymatic activity and the expression of CA IV resulted significantly increased after DNBS injection. NIK-67 normalised CA IV activity in DNBS animals, while AB-118 was partially effective. None of these compounds influenced CA IV expression through the colon. Although further investigations are needed to study the underlying mechanisms, CA IV inhibitors are promising candidates in the search for therapies to relieve visceral pain in IBDs.


Asunto(s)
Anhidrasa Carbónica IV/efectos de los fármacos , Inhibidores de Anhidrasa Carbónica/farmacología , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Dolor Visceral/tratamiento farmacológico , Animales , Anhidrasa Carbónica IV/metabolismo , Inhibidores de Anhidrasa Carbónica/metabolismo , Anhidrasas Carbónicas/metabolismo , Anhidrasas Carbónicas/uso terapéutico , Colon/efectos de los fármacos , Colon/metabolismo , Modelos Animales de Enfermedad , Enfermedades Inflamatorias del Intestino/metabolismo , Ratas Sprague-Dawley , Dolor Visceral/metabolismo
19.
Neurotherapeutics ; 18(3): 2008-2020, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34312766

RESUMEN

Chemotherapy-induced neuropathy (CIN) is a major dose-limiting side effect of anticancer therapy that can compel therapy discontinuation. Inadequate analgesic efficacy of current pharmacological approaches requires the identification of innovative therapeutics and, hence, the purpose of this study is to conduct a preclinical evaluation of the efficacy of DDD-028, a versatile pentacyclic pyridoindole derivative, against paclitaxel-induced neuropathic pain. In two separate experiments, DDD-028 was administered per os acutely (1-25 mg kg-1) or repeatedly (10 mg kg-1) in paclitaxel-treated rats. The response to mechanical noxious stimulus (paw pressure) as well as to non-noxious mechanical (von Frey) and thermal (cold plate) stimuli was investigated. Acute administration of DDD-028 induced a dose-dependent anti-neuropathic pain effect in all tests performed. Further, repeated daily treatment for 18 consecutive days (starting the first day of paclitaxel administration) significantly reduced the development of pain over time without the development of tolerance to the anti-hyperalgesic effect. Ex vivo analysis showed that DDD-028 was able to reduce oxidative damage of dorsal root ganglia as evidenced by the increase in the level of carbonylated proteins and the decrease in catalase activity. In the lumbar spinal cord, periaqueductal gray matter, thalamus, and somatosensory cortex 1, DDD-28 significantly prevented the activation of microglia and astrocytes. The pharmacodynamic study revealed that the pain-relieving effects of DDD-028 were fully blocked by both the non-selective nicotinic receptor (nAChR) antagonist mecamylamine and by the selective α7 nAChR antagonist methyllycaconitine. In conclusion, DDD-028 was active in reducing paclitaxel-induced neuropathic pain after single or repeated administrations without tolerance development and displaying a double symptomatic and neuroprotective profile. DDD-028 could represent a valuable candidate for the treatment of CIN.


Asunto(s)
Analgésicos no Narcóticos/uso terapéutico , Azepinas/uso terapéutico , Carbolinas/uso terapéutico , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Paclitaxel/toxicidad , Analgésicos no Narcóticos/farmacología , Animales , Antineoplásicos Fitogénicos/toxicidad , Azepinas/farmacología , Carbolinas/farmacología , Relación Dosis-Respuesta a Droga , Masculino , Neuralgia/metabolismo , Fármacos Neuroprotectores/farmacología , Ratas , Ratas Sprague-Dawley , Resultado del Tratamiento
20.
Front Mol Biosci ; 8: 643824, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34026827

RESUMEN

In the most recent decades, oxaliplatin has been used as a chemotherapeutic agent for colorectal cancer and other malignancies as well. Oxaliplatin interferes with tumor growth predominantly exerting its action in DNA synthesis inhibition by the formation of DNA-platinum adducts that, in turn, leads to cancer cell death. On the other hand, unfortunately, this interaction leads to a plethora of systemic side effects, including those affecting the peripheral and central nervous system. Oxaliplatin therapy has been associated with acute and chronic neuropathic pain that induces physicians to reduce the dose of medication or discontinue treatment. Recently, the capability of oxaliplatin to alter the genetic and epigenetic profiles of the nervous cells has been documented, and the understanding of gene expression and transcriptional changes may help to find new putative treatments for neuropathy. The present article is aimed to review the effects of oxaliplatin on genetic and epigenetic mechanisms to better understand how to ameliorate neuropathic pain in order to enhance the anti-cancer potential and improve patients' quality of life.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA