Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
PLoS One ; 14(3): e0212685, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30849084

RESUMEN

A commercial corn ethanol production byproduct (syrup) was used as a bacterial growth medium with the long-term aim to repurpose the resulting microbial biomass as a protein supplement in aquaculture feeds. Anaerobic batch reactors were used to enrich for soil bacteria metabolizing the syrup as the sole nutrient source over an eight-day period with the goal of obtaining pure cultures of facultative organisms from the reactors. Amplification of the V4 variable region of the 16S rRNA gene was performed using barcoded primers to track the succession of microbes enriched for during growth on the syrup. The resulting PCR products were sequenced using Illumina MiSeq protocols, analyzed via the program QIIME, and the alpha-diversity was calculated. Seven bacterial families were the most prevalent in the bioreactor community after eight days of enrichment: Clostridiaceae, Alicyclobacillaceae, Ruminococcaceae, Burkholderiaceae, Bacillaceae, Veillonellaceae, and Enterobacteriaceae. Pure culture isolates obtained from the reactors, and additional laboratory stock strains, capable of facultative growth, were grown aerobically in microtiter plates with the syrup substrate to monitor growth yield. Reactor isolates of interest were identified at a species level using the full 16S rRNA gene and other biomarkers. Bacillus species, commonly used as probiotics in aquaculture, showed the highest biomass yield of the monocultures examined. Binary combinations of monocultures yielded no apparent synergism between organisms, suggesting competition for nutrients instead of cooperative metabolite conversion.


Asunto(s)
Bacterias , Biomasa , Reactores Biológicos , Microbiología del Suelo , Zea mays , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Bacterias/aislamiento & purificación , Etanol/metabolismo , ARN Bacteriano/genética , ARN Ribosómico 16S/genética
2.
PeerJ ; 5: e3237, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28462040

RESUMEN

Pantoea stewartii subsp. stewartii is a bacterial phytopathogen that causes Stewart's wilt disease in corn. It uses quorum sensing to regulate expression of some genes involved in virulence in a cell density-dependent manner as the bacterial population grows from small numbers at the initial infection site in the leaf apoplast to high cell numbers in the xylem where it forms a biofilm. There are also other genes important for pathogenesis not under quorum-sensing control such as a Type III secretion system. The purpose of this study was to compare gene expression during an in planta infection versus either a pre-inoculum in vitro liquid culture or an in vitro agar plate culture to identify genes specifically expressed in planta that may also be important for colonization and/or virulence. RNA was purified from each sample type to determine the transcriptome via RNA-Seq using Illumina sequencing of cDNA. Fold gene expression changes in the in planta data set in comparison to the two in vitro grown samples were determined and a list of the most differentially expressed genes was generated to elucidate genes important for plant association. Quantitative reverse transcription PCR (qRT-PCR) was used to validate expression patterns for a select subset of genes. Analysis of the transcriptome data via gene ontology revealed that bacterial transporters and systems important for oxidation reduction processes appear to play a critical role for P. stewartii as it colonizes and causes wilt disease in corn plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA