Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
1.
bioRxiv ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39229073

RESUMEN

Reduced responsiveness of precursor B-acute lymphoblastic leukemia (BCP-ALL) to chemotherapy can be first detected in the form of minimal residual disease leukemia cells that persist after 28 days of initial treatment. The ability of these cells to resist chemotherapy is partly due to the microenvironment of the bone marrow, which promotes leukemia cell growth and provides protection, particularly under these conditions of stress. It is unknown if and how the glycocalyx of such cells is remodelled during the development of tolerance to drug treatment, even though glycosylation is the most abundant cell surface post-translational modification present on the plasma membrane. To investigate this, we performed omics analysis of BCP-ALL cells that survived a 30-day vincristine chemotherapy treatment while in co-culture with bone marrow stromal cells. Proteomics showed decreased levels of some metabolic enzymes. Overall glycocalyx changes included a shift from Core-2 to less complex Core-1 O-glycans, and reduced overall sialylation, with a shift from α2-6 to α2-3 linked Neu5Ac. Interestingly, there was a clear increase in bisecting complex N-glycans with a concomitant increased mRNA expression of MGAT3 , the only enzyme known to form bisecting N-glycans. These small but reproducible quantitative differences suggest that individual glycoproteins become differentially glycosylated. Glycoproteomics confirmed glycosite-specific modulation of cell surface and lysosomal proteins in drug-tolerant BCP-ALL cells, including HLA-DRA, CD38, LAMP1 and PPT1. We conclude that drug-tolerant persister leukemia cells that grow under continuous chemotherapy stress have characteristic glycotraits that correlate with and perhaps contribute to their ability to survive and could be tested as neoantigens in drug-resistant leukemia.

2.
Nature ; 633(8031): 914-922, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39294371

RESUMEN

Metabolic diseases such as obesity and type 2 diabetes are marked by insulin resistance1,2. Cells within the arcuate nucleus of the hypothalamus (ARC), which are crucial for regulating metabolism, become insulin resistant during the progression of metabolic disease3-8, but these mechanisms are not fully understood. Here we investigated the role of a specialized chondroitin sulfate proteoglycan extracellular matrix, termed a perineuronal net, which surrounds ARC neurons. In metabolic disease, the perineuronal net of the ARC becomes augmented and remodelled, driving insulin resistance and metabolic dysfunction. Disruption of the perineuronal net in obese mice, either enzymatically or with small molecules, improves insulin access to the brain, reversing neuronal insulin resistance and enhancing metabolic health. Our findings identify ARC extracellular matrix remodelling as a fundamental mechanism driving metabolic diseases.


Asunto(s)
Núcleo Arqueado del Hipotálamo , Proteoglicanos Tipo Condroitín Sulfato , Matriz Extracelular , Resistencia a la Insulina , Enfermedades Metabólicas , Animales , Masculino , Ratones , Ratas , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Núcleo Arqueado del Hipotálamo/metabolismo , Núcleo Arqueado del Hipotálamo/patología , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Insulina/metabolismo , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/patología , Enfermedades Metabólicas/terapia , Ratones Endogámicos C57BL , Ratones Obesos , Neuronas/metabolismo , Neuronas/patología , Obesidad/metabolismo , Obesidad/patología , Obesidad/terapia , Ratas Sprague-Dawley
3.
J Proteome Res ; 23(7): 2661-2673, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38888225

RESUMEN

The analysis of the structures of glycans present on glycoproteins is an essential component for determining glycoprotein function; however, detailed glycan structural assignment on glycopeptides from proteomics mass spectrometric data remains challenging. Glycoproteomic analysis by mass spectrometry currently can provide significant, yet incomplete, information about the glycans present, including the glycan monosaccharide composition and in some circumstances the site(s) of glycosylation. Advancements in mass spectrometric resolution, using high-mass accuracy instrumentation and tailored MS/MS fragmentation parameters, coupled with a dedicated definition of diagnostic fragmentation ions have enabled the determination of some glycan structural features, or glycotopes, expressed on glycopeptides. Here we present a collation of diagnostic glycan fragments produced by traditional positive-ion-mode reversed-phase LC-ESI MS/MS proteomic workflows and describe the specific fragmentation energy settings required to identify specific glycotopes presented on N- or O-linked glycopeptides in a typical proteomics MS/MS experiment.


Asunto(s)
Glicopéptidos , Polisacáridos , Proteómica , Espectrometría de Masas en Tándem , Glicopéptidos/análisis , Glicopéptidos/química , Proteómica/métodos , Polisacáridos/química , Polisacáridos/análisis , Glicosilación , Glicoproteínas/química , Glicoproteínas/análisis , Espectrometría de Masa por Ionización de Electrospray , Iones/química , Secuencia de Aminoácidos , Humanos , Cromatografía Liquida , Cromatografía de Fase Inversa , Datos de Secuencia Molecular
4.
Adv Healthc Mater ; 13(23): e2400855, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38780418

RESUMEN

Synthetic vascular grafts are used to bypass significant arterial blockage when native blood vessels are unsuitable, yet their propensity to fail due to poor blood compatibility and progressive graft stenosis remains an intractable challenge. Perlecan is the major heparan sulfate (HS) proteoglycan in the blood vessel wall with an inherent ability to regulate vascular cell activities associated with these major graft failure modes. Here the ability of the engineered form of perlecan domain V (rDV) to bind angiogenic growth factors is tuned and endothelial cell proliferation via the composition of its glycosaminoglycan (GAG) chain is supported. It is shown that the HS on rDV supports angiogenic growth factor signaling, including fibroblast growth factor (FGF) 2 and vascular endothelial growth factor (VEGF)165, while both HS and chondroitin sulfate on rDV are involved in VEGF189 signaling. It is also shown that physisorption of rDV on emerging electrospun silk fibroin vascular grafts promotes endothelialization and patency in a murine arterial interposition model, compared to the silk grafts alone. Together, this study demonstrates the potential of rDV as a tunable, angiogenic biomaterial coating that both potentiates growth factors and regulates endothelial cells.


Asunto(s)
Prótesis Vascular , Proteoglicanos de Heparán Sulfato , Seda , Animales , Humanos , Ratones , Proliferación Celular/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/citología , Factor 2 de Crecimiento de Fibroblastos/farmacología , Factor 2 de Crecimiento de Fibroblastos/química , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Proteoglicanos de Heparán Sulfato/química , Proteoglicanos de Heparán Sulfato/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Dominios Proteicos , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/química , Seda/química , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología , Factor A de Crecimiento Endotelial Vascular/química
5.
Cell ; 187(11): 2628-2632, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38788686

RESUMEN

Glycans, with their variable compositions and highly dynamic conformations, vastly expand the heterogeneity of whatever factor or cell they are attached to. These properties make them crucial contributors to biological function and organismal health and also very difficult to study. That may be changing as we look to the future of glycobiology.


Asunto(s)
Glicómica , Polisacáridos , Animales , Humanos , Polisacáridos/metabolismo , Polisacáridos/química
6.
Anal Chem ; 2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38343116

RESUMEN

The mammalian glycome is structurally complex and diverse, composed of many glycan classes such as N- and O-linked glycans, glycosaminoglycans (GAGs), glycosphingolipids (GSLs), and other distinct glycan features such as polysialic acids (PolySia), sulfation, and proteoglycan attachment stubs. Various methods are used to analyze these different components of the glycome, but they require prefractionated/partitioned samples to target each glycan class individually. To address this need for a knowledge of the relationship between the different glycan components of a biological system, we developed a sequential release workflow for analysis of multiple conjugated glycan classes (PolySia, GAGs, GSL glycans, N-glycans, and O-glycans) from the same tissue lysate, termed SSSMuG─Same Sample Sequential Multi-Glycomics. With this sequential glycan release approach, five glycan classes were characterized (or four glycan classes plus proteomics) using enzymatic or chemical release from a single sample immobilized on a polyvinylidene difluoride membrane. The various released glycan classes were then analyzed by HPLC and MS techniques using commonly available analytical setups. Compared to single glycan class release approaches, SSSMuG was able to identify more glycans and more proteins with higher-intensity analytical peaks and provide a better comparative normalization of the different glycan classes of the complex glycome. To this end, the SSSMuG technology workflow will be a foundation for a paradigm shift in the field, transforming glycoanalytics and facilitating the push toward multiglycomics and systems glycobiology.

7.
Analyst ; 149(6): 1774-1783, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38373007

RESUMEN

Surface-enhanced Raman scattering (SERS) nanotags functionalized with lectins as the biological recognition element can be used to target the carbohydrate portion of carbohydrate-carrying molecules (glycoconjugates). An investigation of the optical stability of such functionalized SERS nanotags is an essential initial step before future application and quantification of surface glycan biomarkers on cells and extracellular vesicles. Herein, we report an innovative approach to evaluate the SERS stability of lectin-conjugated nanotags by investigating any possible interfering lectin-lectin interactions in a mixture of different lectin-conjugated SERS nanotags, as well as an assessment of lectin-glycan interaction by mixing wheat germ agglutinin (WGA)-conjugated SERS nanotags with different glycoproteins. No lectin cross-reactivity was found in the mixture of lectin-conjugated SERS nanotags, evidenced by the constant SERS intensity. Additionally, the results showed that the lectins conjugated to SERS nanotags retain their ability to interact with glycans, as evidenced by the changes in the nanotag color and extinction spectra. Their SERS intensity remained constant as supported by finite-element method (FEM) simulation results, demonstrating a high SERS stability and selectivity of lectin-conjugated nanotags towards multiplex applications.


Asunto(s)
Vesículas Extracelulares , Nanopartículas del Metal , Lectinas , Biomarcadores , Espectrometría Raman/métodos , Polisacáridos
8.
J Proteome Res ; 23(2): 532-549, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-38232391

RESUMEN

Since 2010, the Human Proteome Project (HPP), the flagship initiative of the Human Proteome Organization (HUPO), has pursued two goals: (1) to credibly identify the protein parts list and (2) to make proteomics an integral part of multiomics studies of human health and disease. The HPP relies on international collaboration, data sharing, standardized reanalysis of MS data sets by PeptideAtlas and MassIVE-KB using HPP Guidelines for quality assurance, integration and curation of MS and non-MS protein data by neXtProt, plus extensive use of antibody profiling carried out by the Human Protein Atlas. According to the neXtProt release 2023-04-18, protein expression has now been credibly detected (PE1) for 18,397 of the 19,778 neXtProt predicted proteins coded in the human genome (93%). Of these PE1 proteins, 17,453 were detected with mass spectrometry (MS) in accordance with HPP Guidelines and 944 by a variety of non-MS methods. The number of neXtProt PE2, PE3, and PE4 missing proteins now stands at 1381. Achieving the unambiguous identification of 93% of predicted proteins encoded from across all chromosomes represents remarkable experimental progress on the Human Proteome parts list. Meanwhile, there are several categories of predicted proteins that have proved resistant to detection regardless of protein-based methods used. Additionally there are some PE1-4 proteins that probably should be reclassified to PE5, specifically 21 LINC entries and ∼30 HERV entries; these are being addressed in the present year. Applying proteomics in a wide array of biological and clinical studies ensures integration with other omics platforms as reported by the Biology and Disease-driven HPP teams and the antibody and pathology resource pillars. Current progress has positioned the HPP to transition to its Grand Challenge Project focused on determining the primary function(s) of every protein itself and in networks and pathways within the context of human health and disease.


Asunto(s)
Anticuerpos , Proteoma , Humanos , Proteoma/genética , Proteoma/análisis , Bases de Datos de Proteínas , Espectrometría de Masas/métodos , Proteómica/métodos
9.
Nat Cell Biol ; 26(1): 57-71, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38129691

RESUMEN

The structures and functions of organelles in cells depend on each other but have not been systematically explored. We established stable knockout cell lines of peroxisomal, Golgi and endoplasmic reticulum genes identified in a whole-genome CRISPR knockout screen for inducers of mitochondrial biogenesis stress, showing that defects in peroxisome, Golgi and endoplasmic reticulum metabolism disrupt mitochondrial structure and function. Our quantitative total-organelle profiling approach for focussed ion beam scanning electron microscopy revealed in unprecedented detail that specific organelle dysfunctions precipitate multi-organelle biogenesis defects, impair mitochondrial morphology and reduce respiration. Multi-omics profiling showed a unified proteome response and global shifts in lipid and glycoprotein homeostasis that are elicited when organelle biogenesis is compromised, and that the resulting mitochondrial dysfunction can be rescued with precursors for ether-glycerophospholipid metabolic pathways. This work defines metabolic and morphological interactions between organelles and how their perturbation can cause disease.


Asunto(s)
Biogénesis de Organelos , Orgánulos , Orgánulos/metabolismo , Peroxisomas/metabolismo , Aparato de Golgi/metabolismo , Mitocondrias/metabolismo , Lípidos
10.
J Control Release ; 362: 184-196, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37648081

RESUMEN

Growth factors are key molecules involved in angiogenesis, a process critical for tissue repair and regeneration. Despite the potential of growth factor delivery to stimulate angiogenesis, limited clinical success has been achieved with this approach. Growth factors interact with the extracellular matrix (ECM), and particularly heparan sulphate (HS), to bind and potentiate their signalling. Here we show that engineered short forms of perlecan, the major HS proteoglycan of the vascular ECM, bind and signal angiogenic growth factors, including fibroblast growth factor 2 and vascular endothelial growth factor-A. We also show that engineered short forms of perlecan delivered in porous chitosan biomaterial scaffolds promote angiogenesis in a rat full thickness dermal wound model, with the fusion of perlecan domains I and V leading to superior vascularisation compared to native endothelial perlecan or chitosan scaffolds alone. Together, this study demonstrates the potential of engineered short forms of perlecan delivered in chitosan scaffolds as next generation angiogenic therapies which exert biological activity via the potentiation of growth factors.


Asunto(s)
Quitosano , Factor A de Crecimiento Endotelial Vascular , Ratas , Animales , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Proteínas de la Matriz Extracelular
11.
Brain Behav Immun ; 113: 83-90, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37394145

RESUMEN

The Allen Institute Mouse Brain Atlas, with visualisation using the Brain Explorer software, offers a 3-dimensional view of region-specific RNA expression of thousands of mouse genes. In this Viewpoint, we focused on the region-specific expression of genes related to cellular glycosylation, and discuss their relevance towards psychoneuroimmunology. Using specific examples, we show that the Atlas validates existing observations reported by others, identifies previously unknown potential region-specific glycan features, and highlights the need to promote collaborations between glycobiology and psychoneuroimmunology researchers.


Asunto(s)
Encéfalo , Glicómica , Ratones , Animales , Glicómica/métodos , Encéfalo/metabolismo , Programas Informáticos , Glicosilación
12.
Proc Natl Acad Sci U S A ; 120(28): e2301115120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399418

RESUMEN

Enteric bacterial pathogens pose significant threats to human health; however, the mechanisms by which they infect the mammalian gut in the face of daunting host defenses and an established microbiota remain poorly defined. For the attaching and effacing (A/E) bacterial family member and murine pathogen Citrobacter rodentium, its virulence strategy likely involves metabolic adaptation to the host's intestinal luminal environment, as a necessary precursor to reach and infect the mucosal surface. Suspecting this adaptation involved the intestinal mucus layer, we found that C. rodentium was able to catabolize sialic acid, a monosaccharide derived from mucins, and utilize it as its sole carbon source for growth. Moreover, C. rodentium also sensed and displayed chemotactic activity toward sialic acid. These activities were abolished when the nanT gene, encoding a sialic acid transporter, was deleted (ΔnanT). Correspondingly, the ΔnanT C. rodentium strain was significantly impaired in its ability to colonize the murine intestine. Intriguingly, sialic acid was also found to induce the secretion of two autotransporter proteins, Pic and EspC, which possess mucinolytic and host-adherent properties. As a result, sialic acid enhanced the ability of C. rodentium to degrade intestinal mucus (through Pic), as well as to adhere to intestinal epithelial cells (through EspC). We thus demonstrate that sialic acid, a monosaccharide constituent of the intestinal mucus layer, functions as an important nutrient and a key signal for an A/E bacterial pathogen to escape the colonic lumen and directly infect its host's intestinal mucosa.


Asunto(s)
Citrobacter rodentium , Infecciones por Enterobacteriaceae , Animales , Ratones , Bacterias , Citrobacter , Infecciones por Enterobacteriaceae/microbiología , Mucosa Intestinal/microbiología , Mamíferos , Monosacáridos , Ácido N-Acetilneuramínico
13.
J Proteome Res ; 22(4): 1024-1042, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-36318223

RESUMEN

The 2022 Metrics of the Human Proteome from the HUPO Human Proteome Project (HPP) show that protein expression has now been credibly detected (neXtProt PE1 level) for 18 407 (93.2%) of the 19 750 predicted proteins coded in the human genome, a net gain of 50 since 2021 from data sets generated around the world and reanalyzed by the HPP. Conversely, the number of neXtProt PE2, PE3, and PE4 missing proteins has been reduced by 78 from 1421 to 1343. This represents continuing experimental progress on the human proteome parts list across all the chromosomes, as well as significant reclassifications. Meanwhile, applying proteomics in a vast array of biological and clinical studies continues to yield significant findings and growing integration with other omics platforms. We present highlights from the Chromosome-Centric HPP, Biology and Disease-driven HPP, and HPP Resource Pillars, compare features of mass spectrometry and Olink and Somalogic platforms, note the emergence of translation products from ribosome profiling of small open reading frames, and discuss the launch of the initial HPP Grand Challenge Project, "A Function for Each Protein".


Asunto(s)
Proteoma , Proteómica , Humanos , Proteoma/genética , Proteoma/análisis , Bases de Datos de Proteínas , Espectrometría de Masas/métodos , Sistemas de Lectura Abierta , Proteómica/métodos
14.
Sci Rep ; 12(1): 18452, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36323734

RESUMEN

Two molecular cytology approaches, (i) time-gated immunoluminescence assay (TGiA) and (ii) Raman-active immunolabeling assay (RiA), have been developed to detect prostate cancer (PCa) cells in urine from five prostate cancer patients. For TGiA, PCa cells stained by a biocompatible europium chelate antibody-conjugated probe were quantitated by automated time-gated microscopy (OSAM). For RiA, PCa cells labeled by antibody-conjugated Raman probe were detected by Raman spectrometer. TGiA and RiA were first optimized by the detection of PCa cultured cells (DU145) spiked into control urine, with TGiA-OSAM showing single-cell PCa detection sensitivity, while RiA had a limit of detection of 4-10 cells/mL. Blinded analysis of each patient urine sample, using MIL-38 antibody specific for PCa cells, was performed using both assays in parallel with control urine. Both assays detected very low abundance PCa cells in patient urine (3-20 PCa cells per mL by TGiA, 4-13 cells/mL by RiA). The normalized mean of the detected PCa cells per 1 ml of urine was plotted against the clinical data including prostate specific antigen (PSA) level and Clinical Risk Assessment for each patient. Both cell detection assays showed correlation with PSA in the high risk patients but aligned with the Clinical Assessment rather than with PSA levels of the low/intermediate risk patients. Despite the limited available urine samples of PCa patients, the data presented in this proof-of-principle work is promising for the development of highly sensitive diagnostic urine tests for PCa.


Asunto(s)
Antígeno Prostático Específico , Neoplasias de la Próstata , Masculino , Humanos , Biomarcadores de Tumor/orina , Próstata , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/orina , Pelvis
15.
J Nanobiotechnology ; 20(1): 446, 2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36242076

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal cancers worldwide with high mortality, which is mainly due to the lack of reliable biomarkers for PDAC diagnosis/prognosis in the early stages and effective therapeutic strategies for the treatment. Cancer-derived small extracellular vesicles (sEVs), which carry various messages and signal biomolecules (e.g. RNAs, DNAs, proteins, lipids, and glycans) to constitute the key features (e.g. genetic and phenotypic status) of cancer cells, are regarded as highly competitive non-invasive biomarkers for PDAC diagnosis/prognosis. Additionally, new insights on the biogenesis and molecular functions of cancer-derived sEVs pave the way for novel therapeutic strategies based on cancer-derived sEVs for PDAC treatment such as inhibition of the formation or secretion of cancer-derived sEVs, using cancer-derived sEVs as drug carriers and for immunotherapy. This review provides a comprehensive overview of the most recent scientific and clinical research on the discovery and involvement of key molecules in cancer-derived sEVs for PDAC diagnosis/prognosis and strategies using cancer-derived sEVs for PDAC treatment. The current limitations and emerging trends toward clinical application of cancer-derived sEVs in PDAC diagnosis/prognosis and treatment have also been discussed.


Asunto(s)
Carcinoma Ductal Pancreático , Vesículas Extracelulares , Neoplasias Pancreáticas , Biomarcadores de Tumor/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/terapia , Portadores de Fármacos/uso terapéutico , Vesículas Extracelulares/metabolismo , Humanos , Lípidos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/terapia , Pronóstico , Neoplasias Pancreáticas
16.
Nanoscale Adv ; 4(6): 1551-1564, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36134370

RESUMEN

Glycosylation is arguably the most important functional post-translational modification in brain cells and abnormal cell surface glycan expression has been associated with neurological diseases and brain cancers. In this study we developed a novel method for uptake of fluorescent nanodiamonds (FND), carbon-based nanoparticles with low toxicity and easily modifiable surfaces, into brain cell subtypes by targeting their glycan receptors with carbohydrate-binding lectins. Lectins facilitated uptake of 120 nm FND with nitrogen-vacancy centers in three types of brain cells - U87-MG astrocytes, PC12 neurons and BV-2 microglia cells. The nanodiamond/lectin complexes used in this study target glycans that have been described to be altered in brain diseases including sialic acid glycans via wheat (Triticum aestivum) germ agglutinin (WGA), high mannose glycans via tomato (Lycopersicon esculentum) lectin (TL) and core fucosylated glycans via Aleuria aurantia lectin (AAL). The lectin conjugated nanodiamonds were taken up differently by the various brain cell types with fucose binding AAL/FNDs taken up preferentially by glioblastoma phenotype astrocyte cells (U87-MG), sialic acid binding WGA/FNDs by neuronal phenotype cells (PC12) and high mannose binding TL/FNDs by microglial cells (BV-2). With increasing recognition of glycans having a role in many diseases, the lectin bioconjugated nanodiamonds developed here are well suited for further investigation into theranostic applications.

17.
Anal Methods ; 14(23): 2255-2265, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35612592

RESUMEN

Circulating pancreatic ductal adenocarcinoma (PDAC) derived small extracellular vesicles (sEVs) are nano-sized membranous vesicles secreted from PDAC cells and released into surrounding body fluids, such as blood. The use of plasma-derived sEVs for cancer diagnosis is particularly appealing in biomedical research because the sEVs reflect some key features (e.g. genetic and phenotypic status) related to the organs from which they originate. For example, the surface membrane proteins and their expression level on sEVs were reported to be related to the presence and progression of PDAC. However, difficulty in sEVs isolation and lack of ultrasensitive assays for simultaneous analysis of multiple protein biomarkers on patient plasma-derived sEVs hinder their application in the clinic. In our previous study, we have demonstrated the application of magnetic beads (MBs) and surface-enhanced Raman scattering (SERS) assay for phenotypic analysis of cancer cells-derived sEVs using different cell lines. To further demonstrate the clinical application of the proposed assay, we have profiled the sEVs' phenotypes (relative expression of biomarker Glypican 1, EpCAM and CD44V6) of healthy donors and PDAC patients to enable simultaneous detection of multiple surface membrane proteins on plasma-derived sEVs. We discovered that the PDAC sEVs' phenotype signatures had high accuracy for PDAC diagnosis (100%) and showed strong correlation with cancer stages, which were further validated by the imaging techniques (e.g. computerized tomography and magnetic resonance imaging) and also the correlation of cancer stages with CA19-9 (gold standard biomarker) and the sEVs' phenotype signatures. The present proof-of-concept study thus provides an initial investigation of using the proposed SERS assay for PDAC diagnosis and early cancer stage prediction in the clinic.


Asunto(s)
Carcinoma Ductal Pancreático , Vesículas Extracelulares , Neoplasias Pancreáticas , Biomarcadores de Tumor , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Vesículas Extracelulares/genética , Vesículas Extracelulares/patología , Humanos , Proteínas de la Membrana/genética , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Fenotipo , Neoplasias Pancreáticas
18.
Anal Chim Acta ; 1209: 339863, 2022 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-35569873

RESUMEN

Surface modification and functionalization is typically required to engineer upconversion nanoparticles (UCNPs) for biosensing and bioimaging applications. Nevertheless, despite various antibody conjugation methods having been applied to UCNPs, no consensus has been reached on the best choice, as the results from individual studies are largely unable to be compared due to inadequate assessment of the properties of the conjugated products. Here, we introduce a systematic approach to quantitatively evaluate the biological activity of antibody-conjugated UCNPs. We determine that the optimal antibody conjugation efficiency to our colominic acid polysaccharide-coated UCNPs via 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxy succinimide (EDC/NHS) coupling is approximately 70%, corresponding to 16 antibodies per nanoparticle of 63 nm hydrodynamic diameter, with on average 12 of the 16 antibodies maintaining their affinity to the target antigens. The binding ability of the antibody-conjugated UCNPs to the antigen was well preserved, as verified by enzyme-linked immunosorbent assay (ELISA), flow cytometry, and cellular imaging. This is the first study to quantitate the active antibody binding capacity of polysaccharide coated UCNP nanoparticles, offering a practical guideline for benchmarking functionalised UCNPs in future studies.


Asunto(s)
Nanopartículas , Anticuerpos , Nanopartículas/química , Polisacáridos
19.
Glycobiology ; 32(7): 588-599, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35312763

RESUMEN

Neuroblastoma is a highly metastatic childhood cancer for which studies indicate an association between protein glycosylation and tumor behavior. However, there is a lack of detailed glycome analysis on neuroblastoma cells that have varying metastatic potential. Furthermore, the impact of the cell culturing mode, i.e. 2-dimensional (2D) versus 3-dimensional (3D) spheroids, on the membrane protein glycome is unknown. To address these gaps in knowledge, we mapped membrane protein N- and O-glycosylation of neuroblastoma cells that have lower invasive and metastatic potential (Stathmin shRNA-expressing cells, StmnSeq2SH, and StmnSeq3SH) compared with control cells (control shRNA-expressing cells, CtrlSH). We showed that the neuroblastoma cells with different migratory and invasive potential underwent drastic changes in their membrane protein N-glycosylation exclusively when cultured in 3D spheroids. We also investigated the impact of 2D and 3D cell culture methods on cellular glycosylation using the neuroblastoma cells and found the cell N-glycome was markedly impacted by the culture method, with the 2D grown cells showing an abundance of oligomannosidic glycans, whereas 3D spheroids expressed more complex type glycans on their membrane proteins. In summary, this study provides the first comprehensive protein glycome profiling of neuroblastoma cells that have varying invasiveness and migratory potential and unravels the distinct membrane glycan features of cells that are grown under 2D versus 3D culture conditions.


Asunto(s)
Neuroblastoma , Línea Celular Tumoral , Niño , Humanos , Proteínas de la Membrana , Neuroblastoma/genética , Neuroblastoma/patología , Polisacáridos , ARN Interferente Pequeño
20.
Glycobiology ; 32(1): 50-59, 2022 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-34969075

RESUMEN

Opioid use for treatment of persistent pain has increased dramatically over the past two decades, but it has not resulted in improved pain management outcomes. To understand the molecular mechanisms of opioids, molecular signatures that arise from opioid exposure are often sought after, using various analytical methods. In this study, we performed proteomics, and multiglycomics via sequential analysis of polysialic acids, glycosaminoglycans, N-glycans and O-glycans, using the same cerebral spinal fluid (CSF) sample from patients that had long-term (>2 years), intrathecal morphine or baclofen administered via an indwelling pump. Proteomics and N-glycomics signatures between the two treatment groups were highly conserved, while significant differences were observed in polysialic acid, heparan sulfate glycosaminoglycan and O-glycan profiles between the two treatment groups. This represents the first study to investigate the potential relationships between diverse CSF conjugated glycans and long-term intrathecal drug exposure. The unique changes, observed by a sequential analytical workflow, reflect previously undescribed molecular effects of opioid administration and pain management.


Asunto(s)
Baclofeno , Morfina , Analgésicos Opioides/uso terapéutico , Glicoconjugados , Humanos , Inyecciones Espinales , Morfina/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA