Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Mol Biochem Parasitol ; 260: 111647, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39002760

RESUMEN

Entamoeba histolytica, an intestinal parasite of global significance, poses substantial health risks with its associated high morbidity and mortality rates. Despite the current repertoire of molecular tools for the study of gene function in, the regulatory mechanisms governing its pathogenicity remain largely unexplored. This knowledge gap underscores the need to elucidate key genetic determinants orchestrating cellular functions critical to its virulence. Previously, our group generated an avirulent strain, termed UG10, with the same genetic background as the HM1:IMSS strain. UG10 strain, despite showing normal expression levels of well-known virulence factors, was unable to perform in-vitro and in-vivo activities related to amoebic virulence. In this study, we aimed to uncover the genome-wide modifications that rendered the avirulent phenotype of the UG10 strain through whole-genome sequencing. As a complementary approach, we conducted Methylated DNA Immunoprecipitation coupled with sequencing (MeDIP-seq) analysis on both the highly virulent HM1:IMSS strain and the low-virulence UG10 strain to uncover the genome-wide methylation profile. These dual methodologies revealed two aspects of the UG10 avirulent strain. One is the random integration of fragments from the ribosomal gene cluster and tRNA genes, ranging from 120 to 400 bp; and secondly, a clear, enriched methylation profile in the coding and non-coding strand relative to the start codon sequence in genes encoding small GTPases, which is associated with the previously described avirulent phenotype. This study provides the foundation to explore other genetic and epigenetic regulatory circuitries in E. histolytica and novel targets to understand the pathogenic mechanism of this parasite.

2.
PeerJ ; 12: e17496, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38938619

RESUMEN

Pyrophosphatases (PPases) are enzymes that catalyze the hydrolysis of pyrophosphate (PPi), a byproduct of the synthesis and degradation of diverse biomolecules. The accumulation of PPi in the cell can result in cell death. Although the substrate is the same, there are variations in the catalysis and features of these enzymes. Two enzyme forms have been identified in bacteria: cytoplasmic or soluble pyrophosphatases and membrane-bound pyrophosphatases, which play major roles in cell bioenergetics. In eukaryotic cells, cytoplasmic enzymes are the predominant form of PPases (c-PPases), while membrane enzymes (m-PPases) are found only in protists and plants. The study of bacterial cytoplasmic and membrane-bound pyrophosphatases has slowed in recent years. These enzymes are central to cell metabolism and physiology since phospholipid and nucleic acid synthesis release important amounts of PPi that must be removed to allow biosynthesis to continue. In this review, two aims were pursued: first, to provide insight into the structural features of PPases known to date and that are well characterized, and to provide examples of enzymes with novel features. Second, the scientific community should continue studying these enzymes because they have many biotechnological applications. Additionally, in this review, we provide evidence that there are m-PPases present in fungi; to date, no examples have been characterized. Therefore, the diversity of PPase enzymes is still a fruitful field of research. Additionally, we focused on the roles of H+/Na+ pumps and m-PPases in cell bioenergetics. Finally, we provide some examples of the applications of these enzymes in molecular biology and biotechnology, especially in plants. This review is valuable for professionals in the biochemistry field of protein structure-function relationships and experts in other fields, such as chemistry, nanotechnology, and plant sciences.


Asunto(s)
Bacterias , Pirofosfatasa Inorgánica , Pirofosfatasa Inorgánica/metabolismo , Pirofosfatasa Inorgánica/química , Pirofosfatasa Inorgánica/genética , Bacterias/enzimología , Hongos/enzimología , Difosfatos/metabolismo , Difosfatos/química
3.
Microorganisms ; 12(4)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38674737

RESUMEN

The Escherichia coli Keio mutant collection has been a tool for assessing the role of specific genes and determining their role in E. coli physiology and uncovering novel functions. In this work, specific mutants in the DNA repair pathways and oxidative stress response were evaluated to identify the primary targets of silver nanoparticles (NPs) and their mechanism of action. The results presented in this work suggest that NPs mainly target DNA via double-strand breaks and base modifications since the recA, uvrC, mutL, and nfo mutants rendered the most susceptible phenotype, rather than involving the oxidative stress response. Concomitantly, during the establishment of the control conditions for each mutant, the katG and sodA mutants showed a hypersensitive phenotype to mitomycin C, an alkylating agent. Thus, we propose that KatG catalase plays a key role as a cellular chaperone, as reported previously for the filamentous fungus Neurospora crassa, a large subunit catalase. The Keio collection mutants may also be a key tool for assessing the resistance mechanism to metallic NPs by using their potential to identify novel pathways involved in the resistance to NPs.

4.
PeerJ ; 11: e16309, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37849831

RESUMEN

The complex metabolism of Escherichia coli has been extensively studied, including its response to oxygen availability. The ArcA/B two-component system (TCS) is the key regulator for the transition between these two environmental conditions and has been thoroughly characterized using genetic and biochemical approaches. Still, to date, limited structural data is available. The breakthrough provided by AlphaFold2 in 2021 has brought a reliable tool to the scientific community for assessing the structural features of complex proteins. In this report, we analyzed the structural aspects of the ArcA/B TCS using AlphaFold2 models. The models are consistent with the experimentally determined structures of ArcB kinase. The predicted structure of the dimeric form of ArcB is consistent with the extensive genetic and biochemical data available regarding mechanistic signal perception and regulation. The predicted interaction of the dimeric form of ArcB with its cognate response regulator (ArcA) is also consistent with both the forward and reverse phosphotransfer mechanisms. The ArcB model was used to detect putative binding cavities to anaerobic metabolites, encouraging testing of these predictions experimentally. Finally, the highly accurate models of other ArcB homologs suggest that different experimental approaches are needed to determine signal perception in kinases lacking the PAS domain. Overall, ArcB is a kinase with features that need further testing, especially in determining its crystal structure under different conditions.


Asunto(s)
Proteínas de Escherichia coli , Anaerobiosis , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/genética , Dimerización , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Modelos Teóricos , Fosforilación , Proteínas Quinasas/genética , Proteínas Represoras/genética
5.
Molecules ; 28(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37446705

RESUMEN

The signal transduction paradigm in bacteria involves two-component systems (TCSs). Asgardarchaeota are archaea that may have originated the current eukaryotic lifeforms. Most research on these archaea has focused on eukaryotic-like features, such as genes involved in phagocytosis, cytoskeleton structure, and vesicle trafficking. However, little attention has been given to specific prokaryotic features. Here, the sequence and predicted structural features of TCS sensor kinases analyzed from two metagenome assemblies and a genomic assembly from cultured Asgardian archaea are presented. The homology of the sensor kinases suggests the grouping of Lokiarchaeum closer to bacterial homologs. In contrast, one group from a Lokiarchaeum and a meta-genome assembly from Candidatus Heimdallarchaeum suggest the presence of a set of kinases separated from the typical bacterial TCS sensor kinases. AtoS and ArcB homologs were found in meta-genome assemblies along with defined domains for other well-characterized sensor kinases, suggesting the close link between these organisms and bacteria that may have resulted in the metabolic link to the establishment of symbiosis. Several kinases are predicted to be cytoplasmic; some contain several PAS domains. The data shown here suggest that TCS kinases in Asgardian bacteria are witnesses to the transition from bacteria to eukaryotic organisms.


Asunto(s)
Archaea , Células Eucariotas , Archaea/genética , Archaea/metabolismo , Bacterias/genética , Eucariontes/genética , Células Procariotas , Evolución Molecular , Filogenia
6.
Pathogens ; 12(3)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36986411

RESUMEN

Entamoeba histolytica virulence results from complex host-parasite interactions implicating multiple amoebic components (e.g., Gal/GalNAc lectin, cysteine proteinases, and amoebapores) and host factors (microbiota and immune response). UG10 is a strain derived from E. histolytica virulent HM-1:IMSS strain that has lost its virulence in vitro and in vivo as determined by a decrease of hemolytic, cytopathic, and cytotoxic activities, increased susceptibility to human complement, and its inability to form liver abscesses in hamsters. We compared the transcriptome of nonvirulent UG10 and its parental HM-1:IMSS strain. No differences in gene expression of the classical virulence factors were observed. Genes downregulated in the UG10 trophozoites encode for proteins that belong to small GTPases, such as Rab and AIG1. Several protein-coding genes, including iron-sulfur flavoproteins and heat shock protein 70, were also upregulated in UG10. Overexpression of the EhAIG1 gene (EHI_180390) in nonvirulent UG10 trophozoites resulted in augmented virulence in vitro and in vivo. Cocultivation of HM-1:IMSS with E. coli O55 bacteria cells reduced virulence in vitro, and the EhAIG1 gene expression was downregulated. In contrast, virulence was increased in the monoxenic strain UG10, and the EhAIG1 gene expression was upregulated. Therefore, the EhAIG1 gene (EHI_180390) represents a novel virulence determinant in E. histolytica.

7.
PeerJ ; 10: e14478, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36523453

RESUMEN

Pathogenic fungal infection success depends on the ability to escape the immune response. Most strategies for fungal infection control are focused on the inhibition of virulence factors and increasing the effectiveness of antifungal drugs. Nevertheless, little attention has been focused on their physiological resistance to the host immune system. Hints may be found in pathogenic fungi that also inhabit the soil. In nature, the saprophyte lifestyle of fungi is also associated with predators that can induce oxidative stress upon cell damage. The natural sources of nutrients for fungi are linked to cellulose degradation, which in turn generates reactive oxygen species (ROS). Overall, the antioxidant arsenal needed to thrive both in free-living and pathogenic lifestyles in fungi is fundamental for success. In this review, we present recent findings regarding catalases and oxidative stress in fungi and how these can be in close relationship with pathogenesis. Additionally, special focus is placed on catalases of Sporothrix schenckii as a pathogenic model with a dual lifestyle. It is assumed that catalase expression is activated upon exposure to H2O2, but there are reports where this is not always the case. Additionally, it may be relevant to consider the role of catalases in S. schenckii survival in the saprophytic lifestyle and why their study can assess their involvement in the survival and therefore, in the virulence phenotype of different species of Sporothrix and when each of the three catalases are required. Also, studying antioxidant mechanisms in other isolates of pathogenic and free-living fungi may be linked to the virulence phenotype and be potential therapeutic and diagnostic targets. Thus, the rationale for this review to place focus on fungal catalases and their role in pathogenesis in addition to counteracting the effect of immune system reactive oxygen species. Fungi that thrive in soil and have mammal hosts could shed light on the importance of these enzymes in the two types of lifestyles. We look forward to encouraging more research in a myriad of areas on catalase biology with a focus on basic and applied objectives and placing these enzymes as virulence determinants.


Asunto(s)
Sporothrix , Esporotricosis , Animales , Esporotricosis/tratamiento farmacológico , Catalasa/farmacología , Especies Reactivas de Oxígeno/farmacología , Antioxidantes/uso terapéutico , Peróxido de Hidrógeno/farmacología , Proteínas Fúngicas/genética , Mamíferos/metabolismo
8.
PeerJ ; 10: e13772, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35880217

RESUMEN

Organisms need mechanisms to perceive the environment and respond accordingly to environmental changes or the presence of hazards. Transcription factors (TFs) are required for cells to respond to the environment by controlling the expression of genes needed. Escherichia coli has been the model bacterium for many decades, and still, there are features embedded in its genome that remain unstudied. To date, 58 TFs remain poorly characterized, although their binding sites have been experimentally determined. This study showed that these TFs have sequence variation at the third codon position G+C content but maintain the same Codon Adaptation Index (CAI) trend as annotated functional transcription factors. Most of these transcription factors are in areas of the genome where abundant repetitive and mobile elements are present. Sequence divergence points to groups with distinctive sequence signatures but maintaining the same type of DNA binding domain. Finally, the analysis of the promoter sequences of the 58 TFs showed A+T rich regions that agree with the features of horizontally transferred genes. The findings reported here pave the way for future research of these TFs that may uncover their role as spare factors in case of lose-of-function mutations in core TFs and trace back their evolutionary history.


Asunto(s)
Escherichia coli , Factores de Transcripción , Factores de Transcripción/genética , Escherichia coli/genética , Evolución Biológica , Regiones Promotoras Genéticas/genética , Codón
9.
AMB Express ; 12(1): 2, 2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-34989906

RESUMEN

The presence of pollutants in soil and water has given rise to diverse analytical and biological approaches to detect and measure contaminants in the environment. Using bacterial cells as reporter strains represents an advantage for detecting pollutants present in soil or water samples. Here, an Escherichia coli reporter strain expressing a chromoprotein capable of interacting with soil or water samples and responding to DNA damaging compounds is validated. The reporter strain generates a qualitative signal and is based on the expression of the coral chromoprotein AmilCP under the control of the recA promoter. This strain can be used simply by applying soil or water samples directly and rendering activation upon DNA damage. This reporter strain responds to agents that damage DNA (with an apparent detection limit of 1 µg of mitomycin C) without observable response to membrane integrity damage, protein folding or oxidative stress generating agents, in the latter case, DNA damage was observed. The developed reporter strain reported here is effective for the detection of DNA damaging agents present in soils samples. In a proof-of-concept analysis using soil containing chromium, showing activation at 15.56 mg/L of Cr(VI) present in soil and leached samples and is consistent with Cr(III) toxicity at high concentrations (130 µg). Our findings suggest that chromogenic reporter strains can be applied for simple screening, thus reducing the number of samples requiring analytical techniques.

10.
J Microbiol Methods ; 187: 106260, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34090997

RESUMEN

Nitric oxide (NO) is a reactive gas that participates in many physiological as well as pathogenic processes in higher eukaryotic organisms. Inflammatory responses elicit higher levels of this molecule. Nevertheless, there are many technical challenges to accurately measure the amount of NO produced. Previously, a method using whole-cell extracts from Escherichia coli was able to generate the conversion of nitrate into nitrite to measure the amount of nitrate or indirectly the NO present in a sample using the Griess reaction. Here we present an improvement to this method, by using E. coli whole-cell extracts lacking one of the two nitrite reductases, rendered a more precise measurement when coupled with the Griess reaction than our previous report. Alternatively, osmotic stress showed to downregulate the expression of both nitrate reductases, which can be an alternative for indirect nitrate and NO reduction. The results presented here show an easy method for nitrate and NO reduction to nitrite and avoid the reconversion to nitrate, also as an alternative for other analytical methods that are based on cadmium, purified nitrate reductase enzyme, or salicylic methods to reduce NO. This method can be widely used for measuring NO production in living organisms, soil, and other relevant microbiological samples.


Asunto(s)
Escherichia coli/metabolismo , Macrófagos/metabolismo , Óxido Nítrico/análisis , Nitritos/análisis , Animales , Grupo Citocromo c/genética , Escherichia coli/genética , Activación de Macrófagos , Macrófagos/inmunología , Ratones , Mutación , Nitrato-Reductasa/metabolismo , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Oxidación-Reducción , Células RAW 264.7 , Sensibilidad y Especificidad
11.
Antonie Van Leeuwenhoek ; 114(2): 209-221, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33394209

RESUMEN

Entamoeba histolytica represents a useful model in parasitic organisms due to its complex genomic organization and survival mechanisms. To counteract pathogenic organisms, it is necessary to characterize their molecular biology to design new strategies to combat them. In this report, we investigated a less-known genetic element, short interspersed nuclear element 2 (SINE2), that is present in this ameba and is highly transcribed and polyadenylated. In this study, we show that in two different nonvirulent strains of E. histolytica, SINE2 is differentially processed into two transcript fragments, that is, a full-length 560-nt fragment and a shorter 393-nt fragment bearing an approximately 18-nt polyadenylation tail. Sequence analysis of the SINE2 transcript showed that a Musashi-like protein may bind to it. Also, two putative Musashi-like sequences were identified on the transcript. Semiquantitative expression analysis of the two Musashi-like proteins identified in the E. histolytica genome (XP_648918 and XP_649094) showed that XP_64094 is overexpressed in the nonvirulent strains tested. The information available in the literature and the results presented in this report indicate that SINE2 may affect other genes, as observed with the epigenetic silencing of the G3 strain, by an antisense mechanism or via RNA-protein interactions that may ultimately be involved in the phenotype of nonvirulent strains of E. histolytica.


Asunto(s)
Entamoeba histolytica , Poliadenilación , Entamoeba histolytica/genética
12.
Int J Biol Macromol ; 166: 322-332, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33127551

RESUMEN

The ionic gelation method was used to study the effect of the crosslinking agent, sodium tripolyphosphate on average particle size (Dp) and zeta potential (ζp) of chitosan microparticles (CSMP) unloaded and loaded with trans-cinnamaldehyde (TCIN). The obtained values of Dp and ζp trend as 117.6 ±â€¯0.4 ≤ Dp ≤ 478.5 ±â€¯3.5 nm and +27.8 ±â€¯1.3 ≤ ζp ≤ +103.5 ±â€¯4.2 mV, respectively. The entrapment efficiency of TCIN in CSMP was 9.1 ±â€¯2.0% and 71.5 ±â€¯2.9% was released after 360 min (pH = 6.5) which reveals a potential anti-cancer activity in acidic environment. Cytotoxicity of TCIN in DMSO (0-50 µM) was evaluated on MDCK and HeLa cell lines and exhibited low effect at either 24 or 48 h of exposure; whereas TCIN-loaded CSMP (0-50 µM) showed, after 24 h of exposure, 67.6 ±â€¯7.0 and 64.5 ±â€¯3.9% cytotoxicity for MDCK and HeLa cell lines, respectively. At 48 h of exposure, TCIN-loaded CSMP achieved 81.1 ±â€¯0.26 and 77.9 ±â€¯4.2% cytotoxicity for MDCK and HeLa cell lines, respectively.


Asunto(s)
Acroleína/análogos & derivados , Antineoplásicos Fitogénicos/administración & dosificación , Quitosano/química , Microesferas , Acroleína/administración & dosificación , Acroleína/toxicidad , Animales , Antineoplásicos Fitogénicos/toxicidad , Proliferación Celular/efectos de los fármacos , Reactivos de Enlaces Cruzados/química , Perros , Liberación de Fármacos , Células HeLa , Humanos , Hidrogeles/química , Células de Riñón Canino Madin Darby
13.
Colloids Surf B Biointerfaces ; 196: 111296, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32771819

RESUMEN

Herein we report the synthesis of a piezopolymer composed of chitosan (CS)/hydroxylated BaTiO3 (OH-BTO) nanoparticles with enhanced biocompatibility, non-toxicity, and piezoelectric behavior that can be advantageously used in biomedical applications. Our CS/OH-BTO nanocomposites exhibit piezoelectric coefficient (d33 = 11.29 pC/N) between those of dry skin (0.05-0.19 pC/N) and bone (4-11 pC/N), demonstrating biocompatibility in contact with human fibroblasts (HF) cells after 24 h. SEM, XRD, FTIR and Raman measurements were performed to assess the mechanism of interaction between CS matrix and OH-BTO NPs and their correlation with the biological responses. Cytotoxicity assays with HF cells reveal that hydroxylation of BTO NPs does not affect the cell viability of CS/OH-BTO films with NPs concentration from 1 to 30 wt.%. In contrast, non-hydroxylated BTO NPs showed significant cell damage, which could be traced to uncontrollable NPs agglomeration. This behavior suggests that CS/OH-BTO nanocomposites can act as active material that promotes cell growth and can be used for biomedical purposes.


Asunto(s)
Quitosano , Antibacterianos , Compuestos de Bario , Humanos , Ingeniería de Tejidos , Titanio
14.
Protein Pept Lett ; 27(1): 74-84, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31385759

RESUMEN

BACKGROUND: Marine sessile organisms display a color palette that is the result of the expression of fluorescent and non-fluorescent proteins. Fluorescent proteins have uncovered transcriptional regulation, subcellular localization of proteins, and the fate of cells during development. Chromoproteins have received less attention until recent years as bioreporters. Here, we studied the properties of aeBlue, a a 25.91 kDa protein from the anemone Actinia equina. OBJECTIVE: To assess the properties of aeBlue chromoprotein under different physicochemical conditions. METHODS: In this article, during the purification of aeBlue we uncovered that it suffered a color shift when frozen. We studied the color shift by different temperature incubation and physicochemical conditions and light spectroscopy. To assess the possible structural changes in the protein, circular dichroism analysis, size exclusion chromatography and native PAGE was performed. RESULTS: We uncover that aeBlue chromoprotein, when expressed from a synthetic construct in Escherichia coli, showed a temperature dependent color shift. Protein purified at 4 °C by metal affinity chromatography exhibited a pinkish color and shifts back at higher temperatures to its intense blue color. Circular dichroism analysis revealed that the structure in the pink form of the protein has reduced secondary structure at 4 °C, but at 35 °C and higher, the structure shifts to a native conformation and Far UV- vis CD spectra revealed the shift in an aromatic residue of the chromophore. Also, the chromophore retains its properties in a wide range of conditions (pH, denaturants, reducing and oxidants agents). Quaternary structure is also maintained as a tetrameric conformation as shown by native gel and size exclusion chromatography. CONCLUSION: Our results suggest that the chromophore position in aeBlue is shifted from its native position rendering the pink color and the process to return it to its native blue conformation is temperature dependent.


Asunto(s)
Colorantes/química , Proteínas Luminiscentes/química , Pigmentos Biológicos/química , Proteínas/química , Anémonas de Mar/química , Secuencia de Aminoácidos , Animales , Clonación Molecular , Color , Colorantes/metabolismo , Escherichia coli/metabolismo , Expresión Génica , Concentración de Iones de Hidrógeno , Luz , Proteínas Luminiscentes/metabolismo , Modelos Moleculares , Oxidación-Reducción , Pigmentos Biológicos/metabolismo , Conformación Proteica , Desnaturalización Proteica , Proteínas/metabolismo , Espectrofotometría , Temperatura
15.
PLoS Pathog ; 15(8): e1008016, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31461501

RESUMEN

Entamoeba histolytica is a pathogen that during its infective process confronts the host defenses, which damages the amoebic plasma membrane (PM), resulting in the loss of viability. However, it is unknown whether amoebic trophozoites are able to repair their PM when it is damaged. Acid sphingomyelinases (aSMases) have been reported in mammalian cells to promote endocytosis and removal of PM lesions. In this work, six predicted amoebic genes encoding for aSMases were found to be transcribed in the HM1:IMSS strain, finding that the EhaSM6 gene is the most transcribed in basal growth conditions and rendered a functional protein. The secreted aSMase activity detected was stimulated by Mg+2 and inhibited by Co+2. Trophozoites that overexpress the EhaSM6 gene (HM1-SM6HA) exhibit an increase of 2-fold in the secreted aSMase activity. This transfectant trophozoites exposed to pore-forming molecules (SLO, Magainin, ß-Defensin 2 and human complement) exhibited an increase from 6 to 25-fold in the secreted aSMase activity which correlated with higher amoebic viability in a Ca+2 dependent process. However, other agents that affect the PM such as hydrogen peroxide also induced an increase of secreted aSMase, but to a lesser extent. The aSMase6 enzyme is N- and C-terminal processed. Confocal and transmission electron microscopy showed that trophozoites treated with SLO presented a migration of lysosomes containing the aSMase towards the PM, inducing the formation of membrane patches and endosomes in the control strain. These cellular structures were increased in the overexpressing strain, indicating the involvement of the aSMase6 in the PM injury repair. The pore-forming molecules induced an increase in the expression of EhaSM1, 2, 5 and 6 genes, meanwhile, hydrogen peroxide induced an increase in all of them. In all the conditions evaluated, the EhaSM6 gene exhibited the highest levels of induction. Overall, these novel findings show that the aSMase6 enzyme from E. histolytica promotes the repair of the PM damaged with pore-forming molecules to prevent losing cell integrity. This novel system could act when encountered with the lytic defense systems of the host.


Asunto(s)
Membrana Celular/fisiología , Entamoeba histolytica/enzimología , Entamebiasis/parasitología , Esfingomielina Fosfodiesterasa/metabolismo , Trofozoítos/metabolismo , Calcio/metabolismo , Entamebiasis/metabolismo , Humanos , Esfingomielina Fosfodiesterasa/genética , Trofozoítos/crecimiento & desarrollo
16.
Arch Microbiol ; 201(7): 999-1008, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31062059

RESUMEN

Cellular membrane is a key component for maintaining cell shape and integrity. The classical membrane structure and function by Singer and Nicolson groundbreaking model has depicted the membrane as a homogeneous fluid structure. This view has changed by the discovery of discrete domains containing different lipid compositions, called lipid rafts, which play a key role in signal transduction in eukaryotic cells. In the past few years, lipid raft-like structures have been found in bacteria also, constituted by cardiolipin and other modified lipids, perhaps involved in generating a specific site for protein clustering. Here, we report the analysis of a protein termed YqiK from Escherichia coli, a prohibitin homolog that has been implicated in stress sensing by the formation of membrane-associated microdomains. The E. coli yqiK-deficient mutant strain showed an enhanced swimming behavior and was resistant to ampicillin but its response to other stressing conditions was similar to that of the wild-type strain. The abnormal swimming behavior is reversed when the protein is expressed in trans from a plasmid. Also, we demonstrate that YqiK is not redundant with QmcA, another flotillin homolog found in E. coli. Our results, along with the data available in the literature, suggest that YqiK may be involved in the formation of discrete membrane-associated signaling complexes that regulate and agglomerate signaling proteins to generate cell response to chemotaxis.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiología , Proteínas de la Membrana/metabolismo , Proteínas Represoras/metabolismo , Membrana Celular/metabolismo , Quimiotaxis/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Microdominios de Membrana , Proteínas de la Membrana/genética , Mutación , Plásmidos/genética , Prohibitinas , Proteínas Represoras/genética , Transducción de Señal
17.
AAPS PharmSciTech ; 20(5): 198, 2019 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-31127389

RESUMEN

In this work, several normal, oil-in-water (o/w) microemulsions (MEs) were prepared using peppermint essential oil, jojoba oil, trans-anethole, and vitamin E as oil phases to test their capacity to load paclitaxel (PTX). Initially, pseudo-ternary partial phase diagrams were constructed in order to find the normal microemulsion region using d-α-tocopherol polyethylene glycol 1000 succinate (TPGS-1000) as surfactant and isobutanol (iso-BuOH) as co-surfactant. Selected ME formulations were loaded with PTX reaching concentrations of 0.6 mg mL-1 for the peppermint oil and trans-anethole MEs, while for the vitamin E and jojoba oil MEs, the maximum concentration was 0.3 mg mL-1. The PTX-loaded MEs were stable according to the results of heating-cooling cycles and mechanical force (centrifugation) test. Particularly, drug release profile for the PTX-loaded peppermint oil ME (MEPP) showed that ∼ 90% of drug was released in the first 48 h. Also, MEPP formulation showed 70% and 90% viability reduction on human cervical cancer (HeLa) cells after 24 and 48 h of exposure, respectively. In addition, HeLa cell apoptosis was confirmed by measuring caspase activity and DNA fragmentation. Results showed that the MEPP sample presented a major pro-apoptotic capability by comparing with the unloaded PTX ME sample.


Asunto(s)
Antineoplásicos Fitogénicos/síntesis química , Apoptosis/efectos de los fármacos , Citotoxinas/síntesis química , Nanosferas/química , Paclitaxel/síntesis química , Aceites de Plantas/síntesis química , Antineoplásicos Fitogénicos/farmacocinética , Apoptosis/fisiología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Citotoxinas/farmacocinética , Relación Dosis-Respuesta a Droga , Liberación de Fármacos , Células HeLa , Humanos , Mentha piperita , Paclitaxel/farmacocinética , Aceites de Plantas/farmacocinética , Polietilenglicoles/síntesis química , Polietilenglicoles/farmacocinética , Tensoactivos/síntesis química , Tensoactivos/farmacocinética , Vitamina E/síntesis química , Vitamina E/farmacocinética
18.
Antonie Van Leeuwenhoek ; 112(2): 167-177, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30099683

RESUMEN

Oxidative stress is a key regulator in many cellular processes but also an important burden for living organisms. The source of oxidative damage usually is difficult to measure and assess with analytical tools or chemical indicators. One major limitation is to discriminate the presence of secondary oxidant molecules derived from the cellular metabolism after exposure to the oxidant or the scavenging capacity of reactive oxygen species by cells. Using a whole-cell reporter system based on an optimized HyPer2 protein for Escherichia coli expression, we demonstrate that, as previously shown for eukaryotic organisms, the effect at the transcriptional level of hydrogen peroxide can be monitored in vivo using flow cytometry of bacterial cells without the need of a direct analytical measurement. In this approach, we generated two different HyPer2 expression systems, one that is induced by IPTG and a second one that is induced by oxidative stress responsive promoters to control the expression of the HyPer2 protein and the exposure of higher H2O2 concentrations that has been shown to activate oxidative response genes. Both systems showed that the pathway that leads to the generation of H2O2 in vivo can be traced from H2O2 exposure. Our results indicate that hydrogen peroxide pulses can be readily detected in E. coli cells by a defined fluorescence signature that is H2O2 concentration-dependent. Our findings indicate that although less sensitive than purified protein or expressed in eukaryotic cells, HyPer2 is a good bacterial sensor for H2O2. As proof of concept, this system was used to trace the oxidative capacity of Toluidine Blue O showing that oxidative stress and redox imbalance is generated inside the cell. This system is expanding the repertoire of whole cell probes available for tracing cellular stress in bacteria.


Asunto(s)
Proteínas Bacterianas/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Fluorometría/métodos , Proteínas Luminiscentes/metabolismo , Estrés Oxidativo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Genes Reporteros/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/química , Especies Reactivas de Oxígeno/metabolismo
19.
Exp Parasitol ; 194: 38-44, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30253133

RESUMEN

Amoebiasis is a worldwide health problem caused by the pathogen Entamoeba histolytica. Several virulence factors have been implicated in host invasion, immune evasion, and tissue damage. There are still new factors that remain to be elucidated and characterized. In this work, we obtained amoebic transfectants overexpressing three of the neutral sphingomyelinase enzymes encoded in the E. histolytica genome. The EhnSM3 overexpression induced an increase in hemolytic and cytotoxic activities, besides an increase in gene expression of amoebapore A, B, and C. Meanwhile the EhnSM1 and EhnSM2 overexpression caused an increase in cytopathic activity. In all the neutral sphingomyelinases overexpressing strains, the gene expression levels for cysteine proteinase 5, adhesin 112 and, heavy and light Gal/GalNAc lectin subunits were not affected. We propose that the increase of cytotoxic and lytic effect of EhnSM3 overexpressed strain can be related to the sum of the effect of EhnSM3 plus amoebapores, in a process cell contact-dependent or as mediator by inducing the gene expression of amoebapores enabling a link between EhnSM3 with the virulence phenotype in E. histolytica. Our results suggest a differential role for neutral sphingomyelinases in E. histolytica virulence.


Asunto(s)
Entamoeba histolytica/patogenicidad , Esfingomielina Fosfodiesterasa/metabolismo , Animales , Perros , Entamoeba histolytica/enzimología , Entamoeba histolytica/genética , Eritrocitos/metabolismo , Expresión Génica , Genoma de Protozoos , Hemólisis , Humanos , Células de Riñón Canino Madin Darby , Esfingomielina Fosfodiesterasa/genética , Esfingomielina Fosfodiesterasa/aislamiento & purificación , Esfingomielinas/metabolismo , Transfección , Virulencia
20.
ACS Omega ; 3(5): 5177-5186, 2018 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-30023908

RESUMEN

A new, efficient, green, endogenous water-triggered, solvent- and catalyst-free ultrasound-assisted one-pot Groebke-Blackburn-Bienaymé reaction/SNAr/ring-chain azido-tautomerization strategy to synthesize bound-type fused bis-heterocycles imidazo or benzo[d]imidazo[2,1-b]thiazoles and 1,5-disubstituted tetrazole (1,5-DsT) containing quinoline moiety is described, which allows synthesis of two types of fused heterocycles in one step under mild green conditions. Antibacterial and antiamebic activities of selected newly synthesized compounds were carried out against three bacterial species: Gram-positive bacterium Staphylococcus aureus ATCC 6538 and Gram-negative bacteria Pseudomonas aeruginosa ATCC 13384 and Escherichia coli O55 and against one amebic species: Entamoeba histolytica.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA