Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cancer Res ; 84(7): 977-993, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38335278

RESUMEN

Intratumoral hypoxia correlates with metastasis and poor survival in patients with sarcoma. Using an impedance sensing assay and a zebrafish intravital microinjection model, we demonstrated here that the hypoxia-inducible collagen-modifying enzyme lysyl hydroxylase PLOD2 and its substrate collagen type VI (COLVI) weaken the lung endothelial barrier and promote transendothelial migration. Mechanistically, hypoxia-induced PLOD2 in sarcoma cells modified COLVI, which was then secreted into the vasculature. Upon reaching the apical surface of lung endothelial cells, modified COLVI from tumor cells activated integrin ß1 (ITGß1). Furthermore, activated ITGß1 colocalized with Kindlin2, initiating their interaction with F-actin and prompting its polymerization. Polymerized F-actin disrupted endothelial adherens junctions and induced barrier dysfunction. Consistently, modified and secreted COLVI was required for the late stages of lung metastasis in vivo. Analysis of patient gene expression and survival data from The Cancer Genome Atlas (TCGA) revealed an association between the expression of both PLOD2 and COLVI and patient survival. Furthermore, high levels of COLVI were detected in surgically resected sarcoma metastases from patient lungs and in the blood of tumor-bearing mice. Together, these data identify a mechanism of sarcoma lung metastasis, revealing opportunities for therapeutic intervention. SIGNIFICANCE: Collagen type VI modified by hypoxia-induced PLOD2 is secreted by sarcoma cells and binds to integrin ß1 on endothelial cells to induce barrier dysfunction, which promotes sarcoma vascular dissemination and metastasis.


Asunto(s)
Neoplasias Pulmonares , Sarcoma , Humanos , Animales , Ratones , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Células Endoteliales/metabolismo , Pez Cebra/metabolismo , Actinas , Integrina beta1 , Hipoxia , Sarcoma/metabolismo , Pulmón/patología
2.
Cell Death Dis ; 9(11): 1108, 2018 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-30382078

RESUMEN

Terminal differentiation opposes proliferation in the vast majority of tissue types. As a result, loss of lineage differentiation is a hallmark of aggressive cancers, including soft tissue sarcomas (STS). Consistent with these observations, undifferentiated pleomorphic sarcoma (UPS), an STS subtype devoid of lineage markers, is among the most lethal sarcomas in adults. Though tissue-specific features are lost in these mesenchymal tumors they are most commonly diagnosed in skeletal muscle, and are thought to develop from transformed muscle progenitor cells. We have found that a combination of HDAC (Vorinostat) and BET bromodomain (JQ1) inhibition partially restores differentiation to skeletal muscle UPS cells and tissues, enforcing a myoblast-like identity. Importantly, differentiation is partially contingent upon downregulation of the Hippo pathway transcriptional effector Yes-associated protein 1 (YAP1) and nuclear factor (NF)-κB. Previously, we observed that Vorinostat/JQ1 inactivates YAP1 and restores oscillation of NF-κB in differentiating myoblasts. These effects correlate with reduced tumorigenesis, and enhanced differentiation. However, the mechanisms by which the Hippo/NF-κB axis impact differentiation remained unknown. Here, we report that YAP1 and NF-κB activity suppress circadian clock function, inhibiting differentiation and promoting proliferation. In most tissues, clock activation is antagonized by the unfolded protein response (UPR). However, skeletal muscle differentiation requires both Clock and UPR activity, suggesting the molecular link between them is unique in muscle. In skeletal muscle-derived UPS, we observed that YAP1 suppresses PERK and ATF6-mediated UPR target expression as well as clock genes. These pathways govern metabolic processes, including autophagy, and their disruption shifts metabolism toward cancer cell-associated glycolysis and hyper-proliferation. Treatment with Vorinostat/JQ1 inhibited glycolysis/MTOR signaling, activated the clock, and upregulated the UPR and autophagy via inhibition of YAP1/NF-κB. These findings support the use of epigenetic modulators to treat human UPS. In addition, we identify specific autophagy, UPR, and muscle differentiation-associated genes as potential biomarkers of treatment efficacy and differentiation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Autofagia/genética , Proteínas de Ciclo Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de los Músculos/genética , FN-kappa B/genética , Sarcoma/genética , Factor de Transcripción Activador 6/genética , Factor de Transcripción Activador 6/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Autofagia/efectos de los fármacos , Azepinas/farmacología , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Línea Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Relojes Circadianos/efectos de los fármacos , Relojes Circadianos/genética , Humanos , Ratones , Ratones Transgénicos , Neoplasias de los Músculos/tratamiento farmacológico , Neoplasias de los Músculos/metabolismo , Neoplasias de los Músculos/patología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Mioblastos/patología , FN-kappa B/metabolismo , Sarcoma/tratamiento farmacológico , Sarcoma/metabolismo , Sarcoma/patología , Transducción de Señal , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Células Madre/patología , Triazoles/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos , Vorinostat/farmacología , Proteínas Señalizadoras YAP , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
3.
Cancer Res ; 78(10): 2705-2720, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29490948

RESUMEN

To date, no consistent oncogenic driver mutations have been identified in most adult soft tissue sarcomas; these tumors are thus generally insensitive to existing targeted therapies. Here we investigated alternate mechanisms underlying sarcomagenesis to identify potential therapeutic interventions. Undifferentiated pleomorphic sarcoma (UPS) is an aggressive tumor frequently found in skeletal muscle where deregulation of the Hippo pathway and aberrant stabilization of its transcriptional effector yes-associated protein 1 (YAP1) increases proliferation and tumorigenesis. However, the downstream mechanisms driving this deregulation are incompletely understood. Using autochthonous mouse models and whole genome analyses, we found that YAP1 was constitutively active in some sarcomas due to epigenetic silencing of its inhibitor angiomotin (AMOT). Epigenetic modulators vorinostat and JQ1 restored AMOT expression and wild-type Hippo pathway signaling, which induced a muscle differentiation program and inhibited sarcomagenesis. YAP1 promoted sarcomagenesis by inhibiting expression of ubiquitin-specific peptidase 31 (USP31), a newly identified upstream negative regulator of NFκB signaling. Combined treatment with epigenetic modulators effectively restored USP31 expression, resulting in decreased NFκB activity. Our findings highlight a key underlying molecular mechanism in UPS and demonstrate the potential impact of an epigenetic approach to sarcoma treatment.Significance: A new link between Hippo pathway signaling, NFκB, and epigenetic reprogramming is highlighted and has the potential for therapeutic intervention in soft tissue sarcomas. Cancer Res; 78(10); 2705-20. ©2018 AACR.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Transformación Celular Neoplásica/patología , FN-kappa B/metabolismo , Fosfoproteínas/metabolismo , Sarcoma/patología , Neoplasias de los Tejidos Blandos/patología , Proteasas Ubiquitina-Específicas/antagonistas & inhibidores , Proteasas Ubiquitina-Específicas/biosíntesis , Angiomotinas , Animales , Antineoplásicos/farmacología , Azepinas/farmacología , Proteínas de Ciclo Celular , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Vía de Señalización Hippo , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones , Ratones Transgénicos , Proteínas de Microfilamentos/genética , Músculo Esquelético/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , Sarcoma/genética , Transducción de Señal/genética , Neoplasias de los Tejidos Blandos/genética , Factores de Transcripción , Triazoles/farmacología , Vorinostat/farmacología , Proteínas Señalizadoras YAP
4.
Proc Natl Acad Sci U S A ; 113(33): 9292-7, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27486245

RESUMEN

Hypoxia is a critical factor in the progression and metastasis of many cancers, including soft tissue sarcomas. Frequently, oxygen (O2) gradients develop in tumors as they grow beyond their vascular supply, leading to heterogeneous areas of O2 depletion. Here, we report the impact of hypoxic O2 gradients on sarcoma cell invasion and migration. O2 gradient measurements showed that large sarcoma mouse tumors (>300 mm(3)) contain a severely hypoxic core [≤0.1% partial pressure of O2 (pO2)] whereas smaller tumors possessed hypoxic gradients throughout the tumor mass (0.1-6% pO2). To analyze tumor invasion, we used O2-controllable hydrogels to recreate the physiopathological O2 levels in vitro. Small tumor grafts encapsulated in the hydrogels revealed increased invasion that was both faster and extended over a longer distance in the hypoxic hydrogels compared with nonhypoxic hydrogels. To model the effect of the O2 gradient accurately, we examined individual sarcoma cells embedded in the O2-controllable hydrogel. We observed that hypoxic gradients guide sarcoma cell motility and matrix remodeling through hypoxia-inducible factor-1α (HIF-1α) activation. We further found that in the hypoxic gradient, individual cells migrate more quickly, across longer distances, and in the direction of increasing O2 tension. Treatment with minoxidil, an inhibitor of hypoxia-induced sarcoma metastasis, abrogated cell migration and matrix remodeling in the hypoxic gradient. Overall, we show that O2 acts as a 3D physicotactic agent during sarcoma tumor invasion and propose the O2-controllable hydrogels as a predictive system to study early stages of the metastatic process and therapeutic targets.


Asunto(s)
Oxígeno/metabolismo , Sarcoma/patología , Animales , Hipoxia de la Célula , Movimiento Celular , Hidrogeles , Ratones , Minoxidil/farmacología , Invasividad Neoplásica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA