Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Adv Neural Inf Process Syst ; 34: 20295-20307, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35645551

RESUMEN

The integration and transfer of information from multiple sources to multiple targets is a core motive of neural systems. The emerging field of partial information decomposition (PID) provides a novel information-theoretic lens into these mechanisms by identifying synergistic, redundant, and unique contributions to the mutual information between one and several variables. While many works have studied aspects of PID for Gaussian and discrete distributions, the case of general continuous distributions is still uncharted territory. In this work we present a method for estimating the unique information in continuous distributions, for the case of one versus two variables. Our method solves the associated optimization problem over the space of distributions with fixed bivariate marginals by combining copula decompositions and techniques developed to optimize variational autoencoders. We obtain excellent agreement with known analytic results for Gaussians, and illustrate the power of our new approach in several brain-inspired neural models. Our method is capable of recovering the effective connectivity of a chaotic network of rate neurons, and uncovers a complex trade-off between redundancy, synergy and unique information in recurrent networks trained to solve a generalized XOR task.

2.
Cell ; 165(1): 220-233, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-26949187

RESUMEN

Documenting the extent of cellular diversity is a critical step in defining the functional organization of tissues and organs. To infer cell-type diversity from partial or incomplete transcription factor expression data, we devised a sparse Bayesian framework that is able to handle estimation uncertainty and can incorporate diverse cellular characteristics to optimize experimental design. Focusing on spinal V1 inhibitory interneurons, for which the spatial expression of 19 transcription factors has been mapped, we infer the existence of ~50 candidate V1 neuronal types, many of which localize in compact spatial domains in the ventral spinal cord. We have validated the existence of inferred cell types by direct experimental measurement, establishing this Bayesian framework as an effective platform for cell-type characterization in the nervous system and elsewhere.


Asunto(s)
Teorema de Bayes , Células de Renshaw/química , Células de Renshaw/citología , Médula Espinal/citología , Factores de Transcripción/análisis , Animales , Ratones , Células de Renshaw/clasificación , Transcriptoma
3.
J Comput Neurosci ; 36(3): 415-43, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24077932

RESUMEN

We present fast methods for filtering voltage measurements and performing optimal inference of the location and strength of synaptic connections in large dendritic trees. Given noisy, subsampled voltage observations we develop fast l1-penalized regression methods for Kalman state-space models of the neuron voltage dynamics. The value of the l1-penalty parameter is chosen using cross-validation or, for low signal-to-noise ratio, a Mallows' Cp-like criterion. Using low-rank approximations, we reduce the inference runtime from cubic to linear in the number of dendritic compartments. We also present an alternative, fully Bayesian approach to the inference problem using a spike-and-slab prior. We illustrate our results with simulations on toy and real neuronal geometries. We consider observation schemes that either scan the dendritic geometry uniformly or measure linear combinations of voltages across several locations with random coefficients. For the latter, we show how to choose the coefficients to offset the correlation between successive measurements imposed by the neuron dynamics. This results in a "compressed sensing" observation scheme, with an important reduction in the number of measurements required to infer the synaptic weights.


Asunto(s)
Dendritas/fisiología , Modelos Neurológicos , Neuronas/fisiología , Sinapsis/fisiología , Algoritmos , Simulación por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA