Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Phys Med Biol ; 68(17)2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37414003

RESUMEN

Objective. To report the use of a portable primary standard level graphite calorimeter for direct dose determination in clinical pencil beam scanning proton beams, which forms part of the recommendations of the proposed Institute of Physics and Engineering in Medicine (IPEM) Code of Practice (CoP) for proton therapy dosimetry.Approach. The primary standard proton calorimeter (PSPC) was developed at the National Physical Laboratory (NPL) and measurements were performed at four clinical proton therapy facilities that use pencil beam scanning for beam delivery. Correction factors for the presence of impurities and vacuum gaps were calculated and applied, as well as dose conversion factors to obtain dose to water. Measurements were performed in the middle of 10 × 10 × 10 cm3homogeneous dose volumes, centred at 10.0, 15.0 and 25.0 g·cm-2depth in water. The absorbed dose to water determined with the calorimeter was compared to the dose obtained using PTW Roos-type ionisation chambers calibrated in terms of absorbed dose to water in60Co applying the recommendations in the IAEA TRS-398 CoP.Main results.The relative dose difference between the two protocols varied between 0.4% and 2.1% depending on the facility. The reported overall uncertainty in the determination of absorbed dose to water using the calorimeter is 0.9% (k= 1), which corresponds to a significant reduction of uncertainty in comparison with the TRS-398 CoP (currently with an uncertainty equal or larger than 2.0% (k= 1) for proton beams).Significance. The establishment of a purpose-built primary standard and associated CoP will considerably reduce the uncertainty of the absorbed dose to water determination and ensure improved accuracy and consistency in the dose delivered to patients treated with proton therapy and bring proton reference dosimetry uncertainty in line with megavoltage photon radiotherapy.


Asunto(s)
Grafito , Terapia de Protones , Humanos , Protones , Radiometría/métodos , Agua , Calibración
2.
Phys Med Biol ; 68(6)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36731142

RESUMEN

Objective. The radiation response of alanine is very well characterized in the MV photon energy range where it can be used to determine the dose delivered with an accuracy better than 1%, making it suitable as a secondary standard detector in cancer radiation therapy. This is not the case in the very low energy keV x-ray range where the alanine response is affected by large uncertainties and is strongly dependent on the x-ray beam energy. This motivated the study undertaken here.Approach. Alanine pellets with a nominal thickness of 0.5 mm and diameter of 5 mm were irradiated with monoenergetic x-rays at the Diamond Light Source synchrotron, to quantify their response in the 8-20 keV range relative to60Co radiation. The absorbed dose to graphite was measured with a small portable graphite calorimeter, and the DOSRZnrc code in the EGSnrc Monte Carlo package was used to calculate conversion factors between the measured dose to graphite and the absorbed dose to water delivered to the alanine pellets. GafChromic EBT3 films were used to measure the beam profile for modelling in the MC simulations.Main results. The relative responses measured in this energy range were found to range from 0.616 to 0.643, with a combined relative expanded uncertainty of 3.4%-3.5% (k= 2), where the majority of the uncertainty originated from the uncertainty in the alanine readout, due to the small size of the pellets used.Significance. The measured values were in good agreement with previously published data in the overlapping region of x-ray energies, while this work extended the dataset to lower energies. By measuring the response to monoenergetic x-rays, the response to a more complex broad-spectrum x-ray source can be inferred if the spectrum is known, meaning that this work supports the establishment of alanine as a secondary standard dosimeter for low-energy x-ray sources.


Asunto(s)
Alanina , Sincrotrones , Rayos X , Alanina/metabolismo , Alanina/efectos de la radiación , Braquiterapia , Grafito , Método de Montecarlo , Neoplasias/radioterapia , Radiometría/métodos , Incertidumbre , Humanos
3.
Phys Med Biol ; 68(7)2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36696694

RESUMEN

Objective. In proton therapy there is a need for proton optimised tissue-equivalent materials as existing phantom materials can produce large uncertainties in the determination of absorbed dose and range measurements. The aim of this work is to develop and characterise optimised tissue-equivalent materials for proton therapy.Approach. A mathematical model was developed to enable the formulation of epoxy-resin based tissue-equivalent materials that are optimised for all relevant interactions of protons with matter, as well as photon interactions, which play a role in the acquisition of CT numbers. This model developed formulations for vertebra bone- and skeletal muscle-equivalent plastic materials. The tissue equivalence of these new materials and commercial bone- and muscle-equivalent plastic materials were theoretical compared against biological tissue compositions. The new materials were manufactured and characterised by their mass density, relative stopping power (RSP) measurements, and CT scans to evaluate their tissue-equivalence.Main results. Results showed that existing tissue-equivalent materials can produce large uncertainties in proton therapy dosimetry. In particular commercial bone materials showed to have a relative difference up to 8% for range. On the contrary, the best optimised formulations were shown to mimic their target human tissues within 1%-2% for the mass density and RSP. Furthermore, their CT-predicted RSP agreed within 1%-2% of the experimental RSP, confirming their suitability as clinical phantom materials.Significance. We have developed a tool for the formulation of tissue-equivalent materials optimised for proton dosimetry. Our model has enabled the development of proton optimised tissue-equivalent materials which perform better than existing tissue-equivalent materials. These new materials will enable the advancement of clinical proton phantoms for accurate proton dosimetry.


Asunto(s)
Terapia de Protones , Humanos , Terapia de Protones/métodos , Protones , Radiometría , Fantasmas de Imagen , Plásticos
4.
Phys Med Biol ; 67(22)2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36170868

RESUMEN

Objective. A calibration service based on a primary standard calorimeter for the direct determination of absorbed dose for proton beams does not exist. A new Code of Practice (CoP) for reference dosimetry of proton beams is being developed by a working party of the UK Institute of Physics and Engineering in Medicine (IPEM), which will recommend that ionisation chambers are calibrated directly in their clinical beams against the proposed Primary Standard Proton Calorimeter (PSPC) developed at the National Physical Laboratory (NPL). The aim of this work is to report on the use of the NPL PSPC to directly calibrate ionisation chambers in a low-energy passively scattered proton beam following recommendations of the upcoming IPEM CoP.Approach. A comparison between the dose derived using the proposed IPEM CoP and the IAEA TRS-398 protocol was performed, andkQvalues were determined experimentally for three types of chambers. In total, 9 plane-parallel and 3 cylindrical chambers were calibrated using the two protocols for two separate visits.Main results. The ratio of absorbed dose to water obtained with the PSPC and with ionisation chambers applying TRS-398 varied between 0.98 and 1.00, depending on the chamber type. The new procedure based on the PSPC provides a significant improvement in uncertainty where absorbed dose to water measured with a user chamber is reported with an uncertainty of 0.9% (1σ), whereas the TRS-398 protocol reports an uncertainty of 2.0% and 2.3% (1σ) for cylindrical and plane-parallel chambers, respectively. ThekQvalues found agree within uncertainties with those from TRS-398 and Monte Carlo calculations.Significance. The establishment of a primary standard calorimeter for the determination of absorbed dose in proton beams combined with the introduction of the associated calibration service following the IPEM recommendations will reduce the uncertainty and improve consistency in the dose delivered to patients.


Asunto(s)
Grafito , Radioterapia de Alta Energía , Humanos , Radioterapia de Alta Energía/métodos , Protones , Dosificación Radioterapéutica , Radiometría/métodos , Calibración , Agua
5.
Phys Med Biol ; 67(6)2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35240589

RESUMEN

Detailed characterisation of the Roos secondary standard plane-parallel ionisation chamber has been conducted in a novel 200 MeV Very High Energy Electron (VHEE) beam with reference to the standard 12 MeV electron calibration beam used in our experimental work. Stopping-power-ratios and perturbation factors have been determined for both beams and used to calculated the beam quality correction factor using the Geant4 general purpose MC code. These factors have been calculated for a variety of charged particle transport parameters available in Geant4 which were found to pass the Fano cavity test. Stopping-power-ratios for the 12 MeV electron calibration beam quality were found to agree within uncertainties to that quoted by current dosimetry protocols. Perturbation factors were found to vary by up-to 4% for the calibration beam depending on the parameter configuration, compared with only 0.8% for the VHEE beam. Beam quality correction factors were found to describe an approximately 10% lower dose than would be originally calculated if a beam quality correction were not accounted for. Moreover, results presented here largely resolve unphysical chamber measurements, such as collection efficiencies greater than 100%, and assist in the accurate determination of absorbed dose and ion recombination in secondary standard ionisation chambers.

6.
Phys Med ; 93: 59-68, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34968893

RESUMEN

PURPOSE: In particle therapy, determination of range by measurement or calculation can be a significant source of uncertainty. This work investigates the development of a bespoke Range Length Phantom (RaLPh) to allow independent determination of proton range in tissue. This phantom is intended to be used as an audit device. METHOD: RaLPh was designed to be compact and allows different configurations of tissue substitute slabs, to facilitate measurement of range using radiochromic film. Fourteen RaLPh configurations were tested, using two types of proton fluence optimised water substitutes, two types of bone substitute, and one lung substitute slabs. These were designed to mimic different complex tissue interfaces. Experiments were performed using a 115 MeV mono-energetic scanning proton beam to investigate the proton range for each configuration. Validation of the measured film ranges was performed via Monte Carlo simulations and ionisation chamber measurements. The phantom was then assessed as an audit device, by comparing film measurements with Treatment Planning System (TPS) predicted ranges. RESULTS: Varying the phantom slab configurations allowed for measurable range differences, and the best combinations of heterogeneous material gave agreement between film and Monte Carlo on average within 0.2% and on average within 0.3% of ionisation chamber measurements. Results against the TPS suggest a material density override is currently required to enable the phantom to be an audit device. CONCLUSION: This study found that a heterogeneous phantom with radiochromic film can provide range verification as part of a dedicated audit for clinical proton therapy beams.


Asunto(s)
Terapia de Protones , Método de Montecarlo , Fantasmas de Imagen , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
7.
Phys Med Biol ; 66(24)2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34844225

RESUMEN

Objective.The boundary crossing algorithm available in Geant4 10.07-p01 general purpose Monte Carlo code has been investigated for a 12 and 200 MeV electron source by the application of a Fano cavity test.Approach.Fano conditions were enforced through all simulations whilst varying individual charged particle transport parameters which control particle step size, ionisation and single scattering.Main Results.At 12 MeV, Geant4 was found to return excellent dose consistency within 0.1% even with the default parameter configurations. The 200 MeV case, however, showed significant consistency issues when default physics parameters were employed with deviations from unity of more than 6%. The effect of the inclusion of nuclear interactions was also investigated for the 200 MeV beam and was found to return good consistency for a number of parameter configurations.Significance.The Fano test is a necessary investigation to ensure the consistency of charged particle transport available in Geant4 before detailed detector simulations can be conducted.

8.
Sci Rep ; 10(1): 9089, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32493952

RESUMEN

High dose-rate radiotherapy, known as FLASH, has been shown to increase the differential response between healthy and tumour tissue. Moreover, Very High Energy Electrons (VHEEs) provide more favourable dose distributions than conventional radiotherapy electron and photon beams. Plane-parallel ionisation chambers are the recommended secondary standard systems for clinical reference dosimetry of electrons, therefore chamber response to these high energy and high dose-per-pulse beams must be well understood. Graphite calorimetry, the UK primary standard, has been employed to measure the dose delivered from a 200 MeV pulsed electron beam. This was compared to the charge measurements of a plane-parallel ionisation chamber to determine the absolute collection efficiency and infer the ion recombination factor. The dose-per-pulse measured by the calorimeter ranged between 0.03 Gy/pulse and 5.26 Gy/pulse, corresponding to collection efficiencies between 97% and 4%, respectively. Multiple recombination models currently available have been compared with experimental results. This work is directly applicable to the development of standard dosimetry protocols for VHEE radiotherapy, FLASH radiotherapy and other high dose-rate modalities. However, the use of secondary standard ionisation chambers for the dosimetry of high dose-per-pulse VHEEs has been shown to require large corrections for charge collection inefficiency.

9.
Phys Med Biol ; 65(12): 125015, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32340002

RESUMEN

Four-dimensional dose calculation (4D-DC) is crucial for predicting the dosimetric outcome in the presence of intra-fractional organ motion. Time-resolved dosimetry can provide significant insights into 4D pencil beam scanning dose accumulation and is therefore irreplaceable for benchmarking 4D-DC. In this study a novel approach of time-resolved dosimetry using five PinPoint ionization chambers (ICs) embedded in an anthropomorphic dynamic phantom was employed and validated against beam delivery details. Beam intensity variations as well as the beam delivery time structure were well reflected with an accuracy comparable to the temporal resolution of the IC measurements. The 4D dosimetry approach was further applied for benchmarking the 4D-DC implemented in the RayStation 6.99 treatment planning system. Agreement between computed values and measurements was investigated for (i) partial doses based on individual breathing phases, and (ii) temporally distributed cumulative doses. For varied beam delivery and patient-related parameters the average unsigned dose difference for (i) was 0.04 ± 0.03 Gy over all considered IC measurement values, while the prescribed physical dose was 2 Gy. By implementing (ii), a strong effect of the dose gradient on measurement accuracy was observed. The gradient originated from scanned beam energy modulation and target motion transversal to the beam. Excluding measurements in the high gradient the relative dose difference between measurements and 4D-DCs for a given treatment plan at the end of delivery was 3.5% on average and 6.6% at maximum over measurement points inside the target. Overall, the agreement between 4D dose measurements in the moving phantom and retrospective 4D-DC was found to be comparable to the static dose differences for all delivery scenarios. The presented 4D-DC has been proven to be suitable for simulating treatment deliveries with various beam- as well as patient-specific parameters and can therefore be employed for dosimetric validation of different motion mitigation techniques.


Asunto(s)
Tomografía Computarizada Cuatridimensional , Terapia de Protones , Radiometría , Planificación de la Radioterapia Asistida por Computador , Fraccionamiento de la Dosis de Radiación , Humanos , Movimientos de los Órganos , Fantasmas de Imagen , Respiración , Factores de Tiempo
10.
Phys Med Biol ; 65(4): 045015, 2020 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-31365915

RESUMEN

A new practical method to determine the ion recombination correction factor (k s ) for plane-parallel and Farmer-type cylindrical chambers in particle beams is investigated. Experimental data were acquired in passively scattered and scanned particle beams and compared with theoretical models developed by Boag and/or Jaffé. The new method, named the three-voltage linear method (3VL-method), is simple and consists of determining the saturation current using the current measured at three voltages in a linear region and dividing it by the current at the operating voltage (V) (even if it is not in the linear region) to obtain k s . For plane-parallel chambers, comparing k s -values obtained by model fits to values obtained using the 3VL-method, an excellent agreement is found. For cylindrical chambers, recombination is due to volume recombination only. At low voltages, volume recombination is too large and Boag's models are not applicable. However, for Farmer-type chambers (NE2571), using a smaller voltage range, limited down to 100 V, we observe a linear variation of k s with 1/V 2 or 1/V for continuous or pulsed beams, respectively. This linearity trend allows applying the 3VL-method to determine k s at any polarizing voltage. For the particle beams used, the 3VL-method gives an accurate determination of k s at any polarizing voltage. The choice of the three voltages must to be done with care to ensure to be in a linear region. For Roos-type or Markus-type chambers (i.e. chambers with an electrode spacing of 2 mm) and NE2571 chambers, the use of the 3VL-method with 300 V, 200 V and 150 V is adequate. A difference with the 2V-method and some 3V-methods in the literature is that in the 3VL-method the operational voltage does not have to be one of the three voltages. An advantage over a 2V-method is that the 3VL-method can inherently verify if the linearity condition is fulfilled.


Asunto(s)
Luz , Protones , Radiometría/instrumentación , Modelos Lineales , Dispersión de Radiación
11.
Phys Med Biol ; 65(5): 05TR02, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31627202

RESUMEN

This article reviews the development and summarizes the state-of-the-art in absorbed dose calorimetry for all the common clinical beam modalities covered in reference dosimetry codes of practice, as well as for small and nonstandard fields, and brachytherapy. It focuses primarily on work performed in the last ten years by national laboratories and research institutions and is not restricted to primary standard instruments. The most recent absorbed dose calorimetry review article was published over twenty years ago by Ross and Klassen (1996 Phys. Med. Biol. 41 1-29), and even then, its scope was limited to water calorimeters. Since the application of calorimetry to the measurement of radiation has a long and often overlooked history, a brief introduction into its origins is provided, along with a summary of some of the landmark research that have shaped the current landscape of absorbed dose calorimeters. Technical descriptions of water and graphite calorimetry are kept general, as these have been detailed extensively in relatively recent review articles (e.g. McEwen and DuSautoy (2009 Metrologia 46 S59-79) and Seuntjens and Duane (2009 Metrologia 46 S39-58). The review categorizes calorimeters by the radiation type for which they are applied; from the widely established standards for Co-60 and high-energy x-rays, to the prototype calorimeters used in high-energy electrons and hadron therapy. In each case, focus is placed on the issues and constraints affecting dose measurement in that beam type, and the innovations developed to meet these requirements. For photons, electrons, proton and carbon ion beams, a summary of the ionization chamber beam quality conversion factors (k Q ) determined using said calorimeters is also provided. The article closes with a look forward to some of the most promising new techniques and areas of research and speculates about the future clinical role of absorbed dose calorimetry.


Asunto(s)
Calorimetría , Radiometría/métodos , Dosis de Radiación , Radiometría/instrumentación
12.
Phys Med Biol ; 64(23): 235001, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31652424

RESUMEN

Anthropomorphic phantoms mimicking organ and tumor motion of patients are essential for end-to-end testing of motion mitigation techniques in ion beam therapy. In this work a commissioning procedure developed with the in-house designed respiratory phantom ARDOS (Advanced Radiation DOSimetry system) is presented. The phantom was tested and benchmarked for 4D dose verification in proton therapy, which included: characterization of the tissue equivalent materials from computed tomography (CT) imaging, assessment of dose calculation accuracy in critical structures of the phantom, and testing various detectors for proton dosimetry in the ARDOS phantom. To prove the validity of the CT calibration curve, measured relative stopping powers (RSP) of the ARDOS materials were compared with values from CTs: original and overwritten with known material parameters. Override of rib- and soft-tissue phantom components improved RSP accuracy while inhomogeneous lung tissue, represented by the balsa wood, was better modelled by the CT Hounsfield units. Monte Carlo (MC) dose calculations were benchmarked against measurements with a reference Farmer chamber embedded in ARDOS material samples showing less than 3% relative dose difference. Differences between MC calculated dose distributions and those calculated by analytical algorithms for the ARDOS geometry were higher than 20% of the prescribed dose, depending on the position in the phantom. Pinpoint ionization chambers and thermoluminescence dosimeters showed differences of up to 5.5% compared to MC dose calculations for all lung setups in the static phantom. They were also able to detect dose distortions due to motion. EBT3 film dosimetry was shown to be suitable for 2D relative dose characterization, which could provide extended information on dose distributions in the penumbra area. The presented methodology and results can be used for drafting general recommendations for dynamic phantom commissioning, which is an essential step towards end-to-end evaluation of motion mitigation techniques in ion beam therapy.


Asunto(s)
Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Pulmón/diagnóstico por imagen , Terapia de Protones/métodos , Algoritmos , Calibración , Diseño de Equipo , Dosimetría por Película , Humanos , Método de Montecarlo , Movimiento (Física) , Fantasmas de Imagen , Protones , Radiometría/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Reproducibilidad de los Resultados , Dosimetría Termoluminiscente , Tomografía Computarizada por Rayos X , Agua , Madera
13.
Phys Med Biol ; 64(17): 17NT01, 2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31342920

RESUMEN

This work describes the dosimetric commissioning of the treatment planning system (TPS) RayStation v6.1 from RaySearch Laboratories (Stockholm, Sweden) for a synchrotron-based scanned proton beam delivery with isocentric and non-isocentric setups at MedAustron. Focus was on the comparison of the pencil beam (PBv4.1) and Monte Carlo (MCv4.0) calculation algorithms. Commissioning of dose calculations was done first for 1D/2D dose delivery where the performance of the beam model in reproducing dosimetric properties for the delivery of single static pencil beams and mono-energetic layers with multiple spots was evaluated. The commissioning for 3D beam delivery employed test cases with increasing complexity: from box-shaped fields in homogeneous phantoms to the introduction of oblique incidences and inhomogeneities. Dose calculations were compared to the measured data for different air gaps and using beams with and without range shifter (RaShi). Depth-dose curves and spot shape comparisons showed good agreement of the results obtained with PBv4.1 and MCv4.0 algorithms at isocentric setup for open beam configurations (without RaShi). Comparison of transverse dose profiles for lateral heterogeneities at different depths showed better performance of the MCv4.0 algorithm in comparison to the PBv4.1 algorithm. In the case of 3D delivery comparisons of measured and TPS-calculated dose with MCv4.0 algorithm in box-shaped fields in water showed an average agreement within 2%. The results for dose calculations with the PBv4.1 algorithm showed larger deviations for beams with RaShi at all evaluated air gaps (from 64.8 cm to 14.8 cm). Our results suggest that the MCv4.0 algorithm shall be used in clinics for final dose calculation when beams with RaShi are used especially in the presence of large air gaps, inclined patient surface and lateral inhomogeneities. The detailed stepwise methodology implemented for the RayStation commissioning in this work could serve as further guidance for other facilities introducing a new TPS for proton beam therapy.


Asunto(s)
Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Algoritmos , Humanos , Método de Montecarlo , Fantasmas de Imagen , Dosificación Radioterapéutica
14.
Phys Med Biol ; 63(18): 185020, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30152791

RESUMEN

The increased use of complex forms of radiotherapy using small-field photon and proton beams has invoked a growing interest in the use of micro-ionization chambers. In this study, 48 PTW-TM31015 PinPoint-type micro-ionization chambers that are used in the commissioning and patient specific QA of a proton pencil beam scanning (PBS) delivery system have been characterized in proton and high-energy photon beams. In both beam modalities, the entire set of PinPoint chambers was characterized by imaging them, by evaluating their stability using check source measurements, by experimentally determining the ion recombination, polarity effect and by cross calibrating them in terms of absorbed dose to water against Farmer-type ionization chambers. Beam quality correction factors were theoretically derived for both beam modalities. None of the chambers' check source readings drifted by more than 0.5% over a one year period. Beam quality correction factors for the 6 MV photon with reference to 60Co were on average 1.0 ± 0.5% lower than the theoretical values calculated according to the data and procedures outlined in IAEA TRS-398. While this difference is within the overall dosimetric uncertainty, it is significant considering only uncorrelated uncertainties indicating inconsistencies in the theoretical data. Beam quality correction factors for the 179.2 MeV proton beam with reference to 60Co were in good agreement with the theoretical data. Ion recombination and polarity correction factors were very consistent for all chambers with standard deviations of 0.2% or below show that findings from more comprehensive investigations in the literature can be considered as representative for all the chambers of this type. The characterization of 48 PinPoint-type micro-ionization chambers performed in this study provided a unique opportunity to investigate chamber-to-chamber variations of calibration, beam quality correction factors, ion recombination and polarity correction factors for an unprecedented sample size of chambers for both high-energy photon and proton beams.


Asunto(s)
Fotones , Terapia de Protones/instrumentación , Protones , Calibración , Radioisótopos de Cobalto/normas , Humanos , Terapia de Protones/normas , Radiometría/métodos , Efectividad Biológica Relativa
15.
Phys Med Biol ; 63(5): 055001, 2018 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-29384730

RESUMEN

This paper describes end-to-end test procedures as the last fundamental step of medical commissioning before starting clinical operation of the MedAustron synchrotron-based pencil beam scanning (PBS) therapy facility with protons. One in-house homogeneous phantom and two anthropomorphic heterogeneous (head and pelvis) phantoms were used for end-to-end tests at MedAustron. The phantoms were equipped with alanine detectors, radiochromic films and ionization chambers. The correction for the 'quenching' effect of alanine pellets was implemented in the Monte Carlo platform of the evaluation version of RayStation TPS. During the end-to-end tests, the phantoms were transferred through the workflow like real patients to simulate the entire clinical workflow: immobilization, imaging, treatment planning and dose delivery. Different clinical scenarios of increasing complexity were simulated: delivery of a single beam, two oblique beams without and with range shifter. In addition to the dose comparison in the plastic phantoms the dose obtained from alanine pellet readings was compared with the dose determined with the Farmer ionization chamber in water. A consistent systematic deviation of about 2% was found between alanine dosimetry and the ionization chamber dosimetry in water and plastic materials. Acceptable agreement of planned and delivered doses was observed together with consistent and reproducible results of the end-to-end testing performed with different dosimetric techniques (alanine detectors, ionization chambers and EBT3 radiochromic films). The results confirmed the adequate implementation and integration of the new PBS technology at MedAustron. This work demonstrates that alanine pellets are suitable detectors for end-to-end tests in proton beam therapy and the developed procedures with customized anthropomorphic phantoms can be used to support implementation of PBS technology in clinical practice.


Asunto(s)
Alanina/química , Cabeza/diagnóstico por imagen , Pelvis/diagnóstico por imagen , Fantasmas de Imagen , Protones , Radiometría/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Humanos , Método de Montecarlo , Dosis de Radiación , Sincrotrones
16.
Phys Med Biol ; 62(13): 5365-5382, 2017 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-28504642

RESUMEN

Based on international reference dosimetry protocols for light-ion beams, a correction factor (k s) has to be applied to the response of a plane-parallel ionisation chamber, to account for recombination of negative and positive charges in its air cavity before these charges can be collected on the electrodes. In this work, k s for IBA PPC40 Roos-type chambers is investigated in four scanned light-ion beams (proton, helium, carbon and oxygen). To take into account the high dose-rates used with scanned beams and LET-values, experimental results are compared to a model combining two theories. One theory, developed by Jaffé, describes the variation of k s with the ionization density within the ion track (initial recombination) and the other theory, developed by Boag, describes the variation of k s with the dose rate (volume recombination). Excellent agreement is found between experimental and theoretical k s-values. All results confirm that k s cannot be neglected. The solution to minimise k s is to use the ionisation chamber at high voltage. However, one must be aware that charge multiplication may complicate the interpretation of the measurement. For the chamber tested, it was found that a voltage of 300 V can be used without further complication. As the initial recombination has a logarithmic variation as a function of 1/V, the two-voltage method is not applicable to these scanned beams.


Asunto(s)
Dosis de Radiación , Radiometría/instrumentación , Transferencia Lineal de Energía
17.
Phys Med Biol ; 62(10): 3883-3901, 2017 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-28319031

RESUMEN

The aim of this work was to evaluate the water-equivalence of new trial plastics designed specifically for light-ion beam dosimetry as well as commercially available plastics in clinical proton beams. The water-equivalence of materials was tested by computing a plastic-to-water conversion factor, [Formula: see text]. Trial materials were characterized experimentally in 60 MeV and 226 MeV un-modulated proton beams and the results were compared with Monte Carlo simulations using the FLUKA code. For the high-energy beam, a comparison between the trial plastics and various commercial plastics was also performed using FLUKA and Geant4 Monte Carlo codes. Experimental information was obtained from laterally integrated depth-dose ionization chamber measurements in water, with and without plastic slabs with variable thicknesses in front of the water phantom. Fluence correction factors, [Formula: see text], between water and various materials were also derived using the Monte Carlo method. For the 60 MeV proton beam, [Formula: see text] and [Formula: see text] factors were within 1% from unity for all trial plastics. For the 226 MeV proton beam, experimental [Formula: see text] values deviated from unity by a maximum of about 1% for the three trial plastics and experimental results showed no advantage regarding which of the plastics was the most equivalent to water. Different magnitudes of corrections were found between Geant4 and FLUKA for the various materials due mainly to the use of different nonelastic nuclear data. Nevertheless, for the 226 MeV proton beam, [Formula: see text] correction factors were within 2% from unity for all the materials. Considering the results from the two Monte Carlo codes, PMMA and trial plastic #3 had the smallest [Formula: see text] values, where maximum deviations from unity were 1%, however, PMMA range differed by 16% from that of water. Overall, [Formula: see text] factors were deviating more from unity than [Formula: see text] factors and could amount to a few percent for some materials.


Asunto(s)
Plásticos , Protones , Radiometría/métodos , Agua , Método de Montecarlo , Fantasmas de Imagen
18.
Phys Med Biol ; 62(7): N134-N146, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28211796

RESUMEN

The aim of this work is to develop and adapt a formalism to determine absorbed dose to water from graphite calorimetry measurements in carbon-ion beams. Fluence correction factors, [Formula: see text], needed when using a graphite calorimeter to derive dose to water, were determined in a clinical high-energy carbon-ion beam. Measurements were performed in a 290 MeV/n carbon-ion beam with a field size of 11 × 11 cm2, without modulation. In order to sample the beam, a plane-parallel Roos ionization chamber was chosen for its small collecting volume in comparison with the field size. Experimental information on fluence corrections was obtained from depth-dose measurements in water. This procedure was repeated with graphite plates in front of the water phantom. Fluence corrections were also obtained with Monte Carlo simulations through the implementation of three methods based on (i) the fluence distributions differential in energy, (ii) a ratio of calculated doses in water and graphite at equivalent depths and (iii) simulations of the experimental setup. The [Formula: see text] term increased in depth from 1.00 at the entrance toward 1.02 at a depth near the Bragg peak, and the average difference between experimental and numerical simulations was about 0.13%. Compared to proton beams, there was no reduction of the [Formula: see text] due to alpha particles because the secondary particle spectrum is dominated by projectile fragmentation. By developing a practical dose conversion technique, this work contributes to improving the determination of absolute dose to water from graphite calorimetry in carbon-ion beams.


Asunto(s)
Calorimetría/métodos , Grafito/química , Radioterapia de Iones Pesados/instrumentación , Radioterapia de Iones Pesados/métodos , Fantasmas de Imagen , Algoritmos , Simulación por Computador , Humanos , Método de Montecarlo , Radiometría/métodos , Agua/química
19.
Phys Med Biol ; 61(21): 7623-7638, 2016 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-27740943

RESUMEN

Water-equivalent plastics are frequently used in dosimetry for experimental simplicity. This work evaluates the water-equivalence of novel water-equivalent plastics specifically designed for light-ion beams, as well as commercially available plastics in a clinical high-energy carbon-ion beam. A plastic- to-water conversion factor [Formula: see text] was established to derive absorbed dose to water in a water phantom from ionization chamber readings performed in a plastic phantom. Three trial plastic materials with varying atomic compositions were produced and experimentally characterized in a high-energy carbon-ion beam. Measurements were performed with a Roos ionization chamber, using a broad un-modulated beam of 11 × 11 cm2, to measure the plastic-to-water conversion factor for the novel materials. The experimental results were compared with Monte Carlo simulations. Commercially available plastics were also simulated for comparison with the plastics tested experimentally, with particular attention to the influence of nuclear interaction cross sections. The measured [Formula: see text] correction increased gradually from 0% at the surface to 0.7% at a depth near the Bragg peak for one of the plastics prepared in this work, while for the other two plastics a maximum correction of 0.8%-1.3% was found. Average differences between experimental and numerical simulations were 0.2%. Monte Carlo results showed that for polyethylene, polystyrene, Rando phantom soft tissue and A-150, the correction increased from 0% to 2.5%-4.0% with depth, while for PMMA it increased to 2%. Water-equivalent plastics such as, Plastic Water, RMI-457, Gammex 457-CTG, WT1 and Virtual Water, gave similar results where maximum corrections were of the order of 2%. Considering the results from Monte Carlo simulations, one of the novel plastics was found to be superior in comparison with the plastic materials currently used in dosimetry, demonstrating that it is feasible to tailor plastic materials to be water-equivalent for carbon ions specifically.


Asunto(s)
Carbono/química , Modelos Teóricos , Fantasmas de Imagen , Plásticos/química , Radioterapia de Alta Energía/instrumentación , Agua/química , Humanos , Método de Montecarlo , Radiometría/métodos , Radioterapia de Alta Energía/normas
20.
Phys Med Biol ; 61(18): 6602-6619, 2016 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-27541137

RESUMEN

In this work, we describe a new design of water calorimeter built to measure absorbed dose in non-standard radiation fields with reference depths in the range of 6-20 mm, and its initial testing in clinical electron and proton beams. A functioning calorimeter prototype with a total water equivalent thickness of less than 30 mm was constructed in-house and used to obtain measurements in clinical accelerator-based 6 MeV and 8 MeV electron beams and cyclotron-based 60 MeV monoenergetic and modulated proton beams. Corrections for the conductive heat transfer due to dose gradients and non-water materials was also accounted for using a commercial finite element method software package. Absorbed dose to water was measured with an associated type A standard uncertainty of approximately 0.4% and 0.2% for the electron and proton beam experiments, respectively. In terms of thermal stability, drifts were on the order of a couple of hundred µK min-1, with a short-term variation of 5-10 µK. Heat transfer correction factors ranged between 1.021 and 1.049. The overall combined standard uncertainty on the absorbed dose to water was estimated to be 0.6% for the 6 MeV and 8 MeV electron beams, as well as for the 60 MeV monoenergetic protons, and 0.7% for the modulated 60 MeV proton beam. This study establishes the feasibility of developing an absorbed dose transfer standard for short-range clinical electrons and protons and forms the basis for a transportable dose standard for direct calibration of ionization chambers in the user's beam. The largest contributions to the combined standard uncertainty were the positioning (⩽0.5%) and the correction due to conductive heat transfer (⩽0.4%). This is the first time that water calorimetry has been used in such a low energy proton beam.


Asunto(s)
Calorimetría/métodos , Ciclotrones/instrumentación , Electrones , Protones , Radiometría/instrumentación , Agua/química , Calibración , Radiometría/métodos , Conductividad Térmica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA