RESUMEN
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that currently lacks effective therapy. Given the heterogeneity of clinical and molecular profiles of ALS patients, personalized diagnostics and pathological characterization represent a powerful strategy to optimize patient stratification, thereby enabling personalized treatment. Immortalized lymphocytes from sporadic and genetic ALS patients recapitulate some pathological hallmarks of the disease, facilitating the fundamental task of drug screening. However, the molecular aggregation of ALS has not been characterized in this patient-derived cellular model. Indeed, protein aggregation is one of the most prominent features of neurodegenerative diseases, and therefore, models to test drugs against personalized pathological aggregation could help discover improved therapies. With this work, we aimed to characterize the aggregation profile of ALS immortalized lymphocytes and test several drug candidates with different mechanisms of action. In addition, we have evaluated the molecular aggregation in motor neurons derived from two hiPSC cell lines corresponding to ALS patients with different mutations in TARDBP. The results provide valuable insight into the different characterization of sporadic and genetic ALS patients' immortalized lymphocytes, their differential response to drug treatment, and the usefulness of proteome homeostasis characterization in patients' cells.
Asunto(s)
Esclerosis Amiotrófica Lateral , Proteoma , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/patología , Proteoma/metabolismo , Medicina de Precisión/métodos , Neuronas Motoras/metabolismo , Neuronas Motoras/efectos de los fármacos , Linfocitos/metabolismo , Linfocitos/efectos de los fármacos , Agregado de Proteínas/efectos de los fármacos , Agregado de Proteínas/fisiología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Agregación Patológica de Proteínas/metabolismo , Proteínas de Unión al ADN/metabolismo , Evaluación Preclínica de Medicamentos/métodos , MutaciónRESUMEN
Multitarget ligands (MTLs) have emerged as an interesting alternative for addressing complex multifactorial pathologies such as neurodegenerative diseases. However, a common challenge associated with these compounds is often their high molecular weight and low solubility, which becomes a hurdle when trying to permeate over the blood-brain barrier (BBB). In this study, we have designed two new MTLs that modulate three pharmacological targets simultaneously (tau, beta-amyloid and TAR DNA-binding protein 43). To enhance their brain penetration, we have formulated organic polymeric nanoparticles using poly(lactic-co-glycolic acid). The characterization of the formulations, evaluation of their permeability through an in vitro BBB model, and assessment of their activity on disease-representative cellular models, such as Alzheimer's disease and amyotrophic lateral sclerosis, have been conducted. The results demonstrate the potential of the new MTLs and their nanoparticle encapsulation for the treatment of neurodegenerative diseases.
Asunto(s)
Barrera Hematoencefálica , Enfermedades Neurodegenerativas , Permeabilidad , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Ligandos , Humanos , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Nanopartículas/química , Diseño de Fármacos , Composición de Medicamentos , Péptidos beta-Amiloides/metabolismo , Animales , Proteínas tau/metabolismoRESUMEN
Amyotrophic lateral sclerosis is a fatal neurodegenerative disease without a cure to reverse its progression. Its main hallmark is the nuclear protein TDP-43, which undergoes different post-translational modifications leading to a loss of function in the nucleus and an increase in toxicity in the cytoplasm. Previous reports have indicated that pathogenic TDP-43 exhibits prion-like propagation in various contexts. With the aim of advancing therapeutics focused on preventing the propagation of TDP-43 pathology, we studied the potential role of pathogenic TDP-43 in lymphoblasts from sporadic ALS patients. We used lymphoblastoid cell lines from sporadic ALS patients as a source of pathogenic forms of TDP-43, and healthy human cells (lymphoblasts, myoblasts, neuroblastoma SH-SY5Y, or osteosarcoma U2OS) as recipient cells to investigate the seeding and spread of TDP-43 proteinopathy. Furthermore, we evaluated the potential of targeting TDP-43 phosphorylation with a CK-1 inhibitor to prevent the propagation of the pathology. The results presented herein indicate that pathogenic forms of TDP-43 are secreted into the extracellular medium of sporadic ALS lymphoblasts and could be transported by extracellular vesicles, spreading TDP-43 pathology to healthy cells. Moreover, tunneling nanotubes have also been discovered in pathological cells and may be involved in the transport of TDP-43. Interestingly, targeting TDP-43 phosphorylation with an in-house designed CK-1 inhibitor (IGS2.7) was sufficient to halt TDP-43 pathology transmission, in addition to its known effects on restoring the homeostasis of TDP-43 protein in patients-derived cells.
Asunto(s)
Esclerosis Amiotrófica Lateral , Neuroblastoma , Enfermedades Neurodegenerativas , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Quinasa de la Caseína I , Proteínas de Unión al ADN/metabolismoRESUMEN
AIMS: Multiple sclerosis (MS) is a chronic neurological disease that currently lacks effective curative treatments. There is a need to find effective therapies, especially to reverse the progressive demyelination and neuronal damage. Oligodendrocytes form the myelin sheath around axons in the central nervous system (CNS) and oligodendrocyte precursor cells (OPCs) undergo mechanisms that enable spontaneously the partial repair of damaged lesions. The aim of this study was to discover small molecules with potential effects in demyelinating diseases, including (re)myelinating properties. METHODS: Recently, it has been shown how LRRK2 inhibition promotes oligodendrogliogenesis and therefore an efficient repair or myelin damaged lesions. Here we explored small molecules inhibiting LRRK2 as potential enhancers of primary OPCs proliferation and differentiation, and their potential impact on the clinical score of experimental autoimmune encephalomyelitys (EAE) mice, a validated model of the most frequent clinical form of MS, relapsing-remitting MS. RESULTS: One of the LRRK2 inhibitors presented in this study promoted the proliferation and differentiation of OPC primary cultures. When tested in the EAE murine model of MS, it exerted a statistically significant reduction of the clinical burden of the animals, and histological evidence revealed how the treated animals presented a reduced lesion area in the spinal cord. CONCLUSIONS: For the first time, a small molecule with LRRK2 inhibition properties presented (re)myelinating properties in primary OPCs cultures and potentially in the in vivo murine model. This study provides an in vivo proof of concept for a LRRK2 inhibitor, confirming its potential for the treatment of MS.
Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Células Precursoras de Oligodendrocitos , Ratones , Animales , Encefalomielitis Autoinmune Experimental/patología , Células Precursoras de Oligodendrocitos/patología , Modelos Animales de Enfermedad , Vaina de Mielina/patología , Oligodendroglía/patología , Diferenciación Celular , Benzotiazoles/farmacología , Benzotiazoles/uso terapéutico , Ratones Endogámicos C57BLRESUMEN
The new and unique possibilities that nanomaterials offer have greatly impacted biomedicine, from the treatment and diagnosis of diseases, to the specific and optimized delivery of therapeutic agents. Technological advances in the synthesis, characterization, standardization, and therapeutic performance of nanoparticles have enabled the approval of several nanomedicines and novel applications. Discoveries continue to rise exponentially in all disease areas, from cancer to neurodegenerative diseases. In Spain, there is a substantial net of researchers involved in the development of nanodiagnostics and nanomedicines. In this review, we summarize the state of the art of nanotechnology, focusing on nanoparticles, for the treatment of diseases in Spain (2017-2022), and give a perspective on the future trends and direction that nanomedicine research is taking.
RESUMEN
Introduction: TDP-43 proteinopathy in Alzheimer's disease (AD) patients is recently emerging as a relevant pathomolecular event that may have been overlooked. Recent results in immortalized lymphocytes from AD patients have shown not only an increase of post-translational modifications in TDP-43, such as hyperphosphorylation and fragmentation, but also its prionic behaviour and cell-to-cell disease transmission. With the main goal to advance therapeutic interventions, we present in this work different kinase inhibitors with potential to restore this pathological mechanism. Methodology: We have used immortalized lymphocytes from healthy controls and AD severe patients to evaluate the correction of TDP-43 pathology after the treatment with previously synthetized TTBK1 and CK1 inhibitors. Moreover we used the conditioned mediums of these cells to perform different disease propagation experiments. Results: TDP-43 pathology observed in lymphoblasts from severe AD patients is reduced after the treatment with TTBK1 and CK1 inhibitors (decreasing phosphorylation and increasing nuclear localisation), Furthermore, the significant increase in TDP-43 phosphorylation, cytoplasmic accumulation and aberrant F-actin protrusions (TNT-like structures) observed in control cells growing in CM from AD lymphoblasts were abolished when the CM from AD lymphoblasts treated with previously reported TTBK1 and CK1 inhibitors were used. In addition, the cytosolic transport mediated by molecular motors of the receptor cells was altered with the induced TDP-43 pathology, but it was not produced with the abovementioned pretreated CMs. Conclusion: TTBK1 and CK1 inhibitors, specially VNG1.47 and IGS2.7 compounds, restore TDP-43 pathology and avoid cell-to-cell propagation in immortalized lymphocytes from AD patients, being excellent candidates for the future therapy of this prevalent and devastating disease.
RESUMEN
Glycogen synthase kinase 3ß (GSK-3ß) is a serine/threonine kinase and an attractive therapeutic target for Alzheimer's disease. Based on proteolysis-targeting chimera (PROTAC) technology, a small set of novel GSK-3ß degraders was designed and synthesized by linking two different GSK-3ß inhibitors, SB-216763 and tideglusib, to pomalidomide, as E3 recruiting element, through linkers of different lengths. Compound 1 emerged as the most effective PROTAC being nontoxic up to 20 µM to neuronal cells and already able to degrade GSK-3ß starting from 0.5 µM in a dose-dependent manner. PROTAC 1 significantly reduced the neurotoxicity induced by Aß25-35 peptide and CuSO4 in SH-SY5Y cells in a dose-dependent manner. Based on its encouraging features, PROTAC 1 may serve as a starting point to develop new GSK-3ß degraders as potential therapeutic agents.
Asunto(s)
Enfermedad de Alzheimer , Neuroblastoma , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Glucógeno Sintasa Quinasa 3 beta , Proteínas Serina-Treonina Quinasas , FosforilaciónRESUMEN
Interactions of plasmonic nanocolloids such as gold nanoparticles and nanorods with proximal dye emitters result in efficient quenching of the dye photoluminescence (PL). This has become a popular strategy for developing analytical biosensors relying on this quenching process for signal transduction. Here, we report on the use of stable PEGylated gold nanoparticles, covalently coupled to dye-labeled peptides, as sensitive optically addressable sensors for determining the catalytic efficiency of the human matrix metalloproteinase-14 (MMP-14), a cancer biomarker. We exploit real-time dye PL recovery triggered by MMP-14 hydrolysis of the AuNP-peptide-dye to extract quantitative analysis of the proteolysis kinetics. Sub-nanomolar limit of detections for MMP-14 has been achieved using our hybrid bioconjugates. In addition, we have used theoretical considerations within a diffusion-collision framework to derive enzyme substrate hydrolysis and inhibition kinetics equations, which allowed us to describe the complexity and irregularity of enzymatic proteolysis of nanosurface-immobilized peptide substrates. Our findings offer a great strategy for the development of highly sensitive and stable biosensors for cancer detection and imaging.
Asunto(s)
Metaloproteinasa 14 de la Matriz , Nanopartículas del Metal , Humanos , Oro , Péptidos , HidrólisisRESUMEN
We detail the assembly and characterization of quantum dot (QD)-dye conjugates constructed using a peptide bridge specifically designed to recognize and interact with a breast cancer biomarkerâmatrix metalloproteinase-14 (MMP-14). The assembled QD conjugates are then used as optically addressable probes, relying on Förster resonance energy transfer (FRET) interactions as a transduction mechanism to detect the activity of MMP-14 in solution phase. The QDs were first coated with dithiolane poly(ethylene glycol) (PEG) bearing a carboxyl group that allows coupling via amide bond formation with different dye-labeled peptides. The analytical capability of the conjugates is enabled by correlating changes in the FRET efficiency with the conjugate valence and/or QD-to-dye separation distance, triggered and modulated by enzymatic proteolysis of surface-tethered peptides. The FRET probe exhibits great sensitivity to enzyme digestion with sub-nanomolar limit of detection. We further analyze the proteolysis data within the framework of the Michaelis-Menten model, which considers the fact that surface-attached peptides have a slower diffusion coefficient than free peptides. This results in reduced collision frequency and lower catalytic efficiency, kcat/KM. Our results suggest that our conjugate design is promising, effective, and potentially useful for in vivo analysis.
Asunto(s)
Puntos Cuánticos , Puntos Cuánticos/química , Proteolisis , Metaloproteinasa 14 de la Matriz , Péptidos/química , Transferencia Resonante de Energía de Fluorescencia/métodosRESUMEN
Microtubule targeting agents (MTAs) have been exploited mainly as anti-cancer drugs because of their impact on cellular division and angiogenesis. Additionally, microtubules (MTs) are key structures for intracellular transport, which is frequently hijacked during viral infection. We have analyzed the antiviral activity of clinically used MTAs in the infection of DNA and RNA viruses, including SARS-CoV-2, to find that MT destabilizer agents show a higher impact than stabilizers in the viral infections tested, and FDA-approved anti-helminthic benzimidazoles were among the most active compounds. In order to understand the reasons for the observed antiviral activity, we studied the impact of these compounds in motor proteins-mediated intracellular transport. To do so, we used labeled peptide tools, finding that clinically available MTAs impaired the movement linked to MT motors in living cells. However, their effect on viral infection lacked a clear correlation to their effect in motor-mediated transport, denoting the complex use of the cytoskeleton by viruses. Finally, we further delved into the molecular mechanism of action of Mebendazole by combining biochemical and structural studies to obtain crystallographic high-resolution information of the Mebendazole-tubulin complex, which provided insights into the mechanisms of differential toxicity between helminths and mammalians.
Asunto(s)
Tratamiento Farmacológico de COVID-19 , Mebendazol , Animales , Antivirales/farmacología , Mamíferos , Mebendazol/farmacología , Microtúbulos , SARS-CoV-2 , Tubulina (Proteína)RESUMEN
Alzheimer's disease (AD) is a neurodegenerative disorder for which there is currently no effective treatment. Despite advances in the molecular pathology of the characteristic histopathological markers of the disease (tau protein and ß-amyloid), their translation to the clinic has not provided the expected results. Increasing evidences have demonstrated the presence of aggregates of TDP-43 (TAR DNA binding protein 43) in the postmortem brains of patients diagnosed with AD. The present research is focused on of the study of the pathological role of TDP-43 in AD. For this purpose, immortalized lymphocytes samples from patients diagnosed with different severity of sporadic AD were used and the TDP-43 pathology was analyzed against controls, looking for differences in their fragmentation, phosphorylation and cellular location using Western blot and immunocytochemical techniques. The results revealed an increase in TDP-43 fragmentation, as well as increased phosphorylation and aberrant localization of TDP-43 in the cytosolic compartment of lymphocytes of patients diagnosed with severe AD. Moreover, a fragment of approximately 25 KD was found in the extracellular medium of cells derived from severe AD individuals that seem to have prion-like characteristics. We conclude that TDP-43 plays a key role in AD pathogenesis and its cell to cell propagation.
RESUMEN
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease without any effective treatment. Protein TDP-43 is a pathological hallmark of ALS in both sporadic and familiar patients. Post-translational modifications of TDP-43 promote its aggregation in the cytoplasm. Tau-Tubulin kinase (TTBK1) phosphorylates TDP-43 in cellular and animal models; thus, TTBK1 inhibitors emerge as a promising therapeutic strategy for ALS. The design, synthesis, biological evaluation, kinase-ligand complex structure determination, and molecular modeling studies confirmed novel pyrrolopyrimidine derivatives as valuable inhibitors for further development. Moreover, compound 29 revealed good brain penetration in vivo and was able to reduce TDP-43 phosphorylation not only in cell cultures but also in the spinal cord of transgenic TDP-43 mice. A shift to M2 anti-inflammatory microglia was also demonstrated in vivo. Both these activities led to motor neuron preservation in mice, proposing pyrrolopyrimidine 29 as a valuable lead compound for future ALS therapy.
Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Inflamación/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Animales , Encéfalo/metabolismo , Estudios de Casos y Controles , Humanos , Inflamación/metabolismo , Inflamación/patología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Fosforilación , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacocinética , Ratas , Ratas Wistar , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Distribución TisularRESUMEN
Limb-girdle muscular dystrophy R1 calpain 3-related (LGMDR1) is an autosomal recessive muscular dystrophy produced by mutations in the CAPN3 gene. It is a rare disease and there is no cure or treatment for the disease while the pathophysiological mechanism by which the absence of calpain 3 provokes the dystrophy in muscles is not clear. However, key proteins implicated in Wnt and mTOR signaling pathways, which regulate muscle homeostasis, showed a considerable reduction in their expression and in their phosphorylation in LGMDR1 patients' muscles. Finally, the administration of tideglusib and VP0.7, ATP non-competitive inhibitors of glycogen synthase kinase 3ß (GSK-3ß), restore the expression and phosphorylation of these proteins in LGMDR1 cells, opening the possibility of their use as therapeutic options.
Asunto(s)
Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Distrofia Muscular de Cinturas/tratamiento farmacológico , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Sitio Alostérico/efectos de los fármacos , Antígeno CD56/análisis , Calpaína/deficiencia , Calpaína/genética , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/química , Humanos , Hidrazinas/farmacología , Hidrazinas/uso terapéutico , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/deficiencia , Proteínas Musculares/genética , Distrofia Muscular de Cinturas/enzimología , Proteínas del Tejido Nervioso/química , Fosforilación , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/fisiología , Quinolonas/farmacología , Quinolonas/uso terapéutico , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/fisiología , Tiadiazoles/farmacología , Tiadiazoles/uso terapéutico , Vía de Señalización Wnt/efectos de los fármacosRESUMEN
Multitarget directed ligands (MTDLs) are arising as promising tools to tackle complex diseases. The main goal of this work is to create powerful modulating agents for neurodegenerative disorders. To achieve this aim, we have combined fragments that inhibit key protein kinases involved in the main pathomolecular pathways of Alzheimer's disease (AD) such as tau aggregation, neuroinflammation and decreased neurogenesis, whilst looking for a third action in beta-secretase (BACE1), responsible of ß-amyloid production. We obtained well-balanced MTDLs with in vitro activity in three different relevant targets and efficacy in two cellular models of AD. Furthermore, computational studies confirmed how these compounds accommodate adequately into the long and rather narrow BACE1 catalytic site. Finally, we employed in situ click chemistry using BACE1 as protein template as a versatile synthetic tool that allowed us to obtain further MTDLs.
Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Fármacos Neuroprotectores/farmacología , Triazoles/farmacología , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Línea Celular , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Ligandos , Estructura Molecular , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Triazoles/síntesis química , Triazoles/químicaRESUMEN
CdSe quantum dots (QDs) are valuable tools for deciphering molecular mechanisms in cells. Their conjugation with antibodies offers a unique staining source with optimal characteristics, including increased photostability and narrow emission spectra, allowing for improved multiplexing capabilities using a single excitation source. In combination with pathology models derived from patients, they have great potential to contribute to quantitative molecular profiling and promote personalized medicine. However, the commercial availability of diverse CdSe QDs is still limited and characterization techniques must be performed to these materials or the conjugates developed in the lab to assure a proper function and reproducibility. Furthermore, while there is significant data of QDs experiments in cell lines, the literature with primary human cells is scarce, and QD behavior in these systems may be different. Rigorous characterization data of commercially available QDs and their conjugates with biomolecules of interest is needed in order to establish their potential for target labelling and expand their use among research labs. Here we compare the characterization and labelling performance of different QD conjugates in SH-SY5Y cell line, fibroblasts and immortalized lymphocytes derived from amyotrophic lateral sclerosis patients.
RESUMEN
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder that causes the progressive loss of motoneurons and, unfortunately, there is no effective treatment for this disease. Interconnecting multiple pathological mechanisms are involved in the neuropathology of this disease, including abnormal aggregation of proteins, neuroinflammation and dysregulation of the ubiquitin proteasome system. Such complex mechanisms, together with the lack of reliable animal models of the disease have hampered the development of drugs for this disease. Protein kinases, a key pharmacological target in several diseases, have been linked to ALS as they play a central role in the pathology of many diseases. Therefore several inhibitors are being currently trailed for clinical proof of concept in ALS patients. In this review, we examine the recent literature on protein kinase inhibitors currently in pharmaceutical development for this diseaseas future therapy for AS together with their involvement in the pathobiology of ALS. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.6/issuetoc.
Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Animales , Humanos , Neuronas Motoras , Inhibidores de Proteínas Quinasas/uso terapéutico , UbiquitinaRESUMEN
In recent years quantum dots (QDs) have risen as useful luminescent nanoparticles with multiple applications ranging from laser, image displays and biomedical applications. Here we review and discuss the studies of these nanoparticles in patient derived cellular samples or tissues, including cellular models from iPSCs from patients, biopsied and post-mortem tissue. QD-based multiplexed imaging has been proved to overcome most of the major drawbacks of conventional techniques, exhibiting higher sensitivity, reliability, accuracy and simultaneous labeling of key biomarkers. In this sense, QDs are very promising tools to be further used in clinical applications including diagnosis and therapy approaches. Analyzing the possibilities of these materials in these biological samples gives an overview of the future applications of the nanoparticles in models closer to patients and their specific disease.
Asunto(s)
Compuestos de Cadmio/química , Modelos Biológicos , Puntos Cuánticos/química , Compuestos de Selenio/química , Compuestos de Cadmio/toxicidad , Femenino , Humanos , Masculino , Neoplasias/patología , Puntos Cuánticos/toxicidad , Reproducibilidad de los Resultados , Compuestos de Selenio/toxicidadRESUMEN
Accumulation of TDP-43 in the cytoplasm of diseased neurons is the pathological hallmark of frontotemporal dementia-TDP (FTLD-TDP) and amyotrophic lateral sclerosis (ALS), two diseases that lack efficacious medicine to prevent or to stop disease progression. The discovery of mutations in the TARDBP gene (encoding the nuclear protein known as TDP-43) in both FTLD and ALS patients provided evidence for a link between TDP-43 alterations and neurodegeneration. Our understanding of TDP-43 function has advanced profoundly in the past several years; however, its complete role and the molecular mechanisms that lead to disease are not fully understood. Here we summarize the recent studies of this protein, its relation to neurodegenerative diseases, and the therapeutic strategies for restoring its homeostasis with small molecules. Finally, we briefly discuss the available cellular and animal models that help to shed light on TDP-43 pathology and could serve as tools for the discovery of pharmacological agents for the treatment of TDP-43-related diseases.