Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Cancer Cytopathol ; 132(2): 96-102, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37843532

RESUMEN

Patient-derived organoid models hold promise for advancing clinical cancer research, including diagnosis and personalized and precision medicine approaches, and cytology, in particular, plays a pivotal role in this process. These three-dimensional multicellular structures are heterogeneous, potentially maintain the cancer phenotype, and conserve the genomic, transcriptomic, and epigenomic patterns of the parental tumors. To ensure that only tumor tissue is used for organoid development, cytologic validation is necessary before initiating the process of organoid generation. Here, we explore the technology of tumor organoids and discuss the fundamental application of cytology as a simple and cost-effective approach toward organoid development. We also underscore the potential application of organoid development in drug efficacy studies for lung cancer and head and neck tumors. Additionally, we stress the importance of using fine-needle aspiration to generate tumoroids.


Asunto(s)
Neoplasias Pulmonares , Investigación Biomédica Traslacional , Humanos , Medicina de Precisión/métodos , Citodiagnóstico , Organoides/patología , Neoplasias Pulmonares/patología
2.
Sci Rep ; 13(1): 9617, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37316561

RESUMEN

Cisplatin-based combination chemotherapy is the foundation for treatment of advanced bladder cancer (BlCa), but many patients develop chemoresistance mediated by increased Akt and ERK phosphorylation. However, the mechanism by which cisplatin induces this increase has not been elucidated. Among six patient-derived xenograft (PDX) models of BlCa, we observed that the cisplatin-resistant BL0269 express high epidermal growth factor receptor, ErbB2/HER2 and ErbB3/HER3. Cisplatin treatment transiently increased phospho-ErbB3 (Y1328), phospho-ERK (T202/Y204) and phospho-Akt (S473), and analysis of radical cystectomy tissues from patients with BlCa showed correlation between ErbB3 and ERK phosphorylation, likely due to the activation of ERK via the ErbB3 pathway. In vitro analysis revealed a role for the ErbB3 ligand heregulin1-ß1 (HRG1/NRG1), which is higher in chemoresistant lines compared to cisplatin-sensitive cells. Additionally, cisplatin treatment, both in PDX and cell models, increased HRG1 levels. The monoclonal antibody seribantumab, that obstructs ErbB3 ligand-binding, suppressed HRG1-induced ErbB3, Akt and ERK phosphorylation. Seribantumab also prevented tumor growth in both the chemosensitive BL0440 and chemoresistant BL0269 models. Our data demonstrate that cisplatin-associated increases in Akt and ERK phosphorylation is mediated by an elevation in HRG1, suggesting that inhibition of ErbB3 phosphorylation may be a useful therapeutic strategy in BlCa with high phospho-ErbB3 and HRG1 levels.


Asunto(s)
Cisplatino , Neoplasias de la Vejiga Urinaria , Humanos , Animales , Cisplatino/farmacología , Anticuerpos Monoclonales , Neurregulina-1 , Ligandos , Proteínas Proto-Oncogénicas c-akt , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Modelos Animales de Enfermedad
3.
Biomaterials ; 299: 122145, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37172536

RESUMEN

Cancer is a complex pathological phenomenon that needs to be treated from different aspects. Herein, we developed a size/charge dually transformable nanoplatform (PDR NP) with multiple therapeutic and immunostimulatory properties to effectively treat advanced cancers. The PDR NPs exhibit three different therapeutic modalities (chemotherapy, phototherapy and immunotherapy) that can be used to effectively treat primary and distant tumors, and reduce recurrent tumors; the immunotherapy is simultaneously activated by three major pathways, including toll-like receptor, stimulator of interferon genes and immunogenic cell death, effectively suppresses the tumor development in combination with an immune checkpoint inhibitor. In addition, PDR NPs show size and charge responsive transformability in the tumor microenvironment, which overcomes various biological barriers and efficiently delivers the payloads into tumor cells. Taking these unique characteristics together, PDR NPs effectively ablate primary tumors, activate strong anti-tumor immunity to suppress distant tumors and reduce tumor recurrence in bladder tumor-bearing mice. Our versatile nanoplatform shows great potential for multimodal treatments against metastatic cancers.


Asunto(s)
Nanopartículas , Neoplasias , Animales , Ratones , Línea Celular Tumoral , Nanopartículas/uso terapéutico , Recurrencia Local de Neoplasia , Neoplasias/terapia , Fototerapia , Inmunoterapia , Microambiente Tumoral
4.
Exp Hematol Oncol ; 12(1): 10, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36647169

RESUMEN

Immunotherapy has become the central pillar of cancer therapy. Immune checkpoint inhibitors (ICIs), a major category of tumor immunotherapy, reactivate preexisting anticancer immunity. Initially, ICIs were approved only for advanced and metastatic cancers in the salvage setting after or concurrent with chemotherapy at a response rate of around 20-30% with a few exceptions. With significant progress over the decade, advances in immunotherapy have led to numerous clinical trials investigating ICIs as neoadjuvant and/or adjuvant therapies for resectable solid tumors. The promising results of these trials have led to the United States Food and Drug Administration (FDA) approvals of ICIs as neoadjuvant or adjuvant therapies for non-small cell lung cancer, melanoma, triple-negative breast cancer, and bladder cancer, and the list continues to grow. This therapy represents a paradigm shift in cancer treatment, as many early-stage cancer patients could be cured with the introduction of immunotherapy in the early stages of cancer. Therefore, this topic became one of the main themes at the 2021 China Cancer Immunotherapy Workshop co-organized by the Chinese American Hematologist and Oncologist Network, the China National Medical Products Administration and the Tsinghua University School of Medicine. This review article summarizes the current landscape of ICI-based immunotherapy, emphasizing the new clinical developments of ICIs as curative neoadjuvant and adjuvant therapies for early-stage disease.

5.
Cancers (Basel) ; 14(23)2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36497466

RESUMEN

The role of surgical experience and its impact on the survival requires further investigation. A cohort of patients undergoing radical cystectomy or anterior pelvic exenteration for localized bladder cancer between 2006 and 2013 at 1143 facilities across the United States was identified using the National Cancer Database and analyzed. Using overall survival (OS) as the primary outcome, the relationship between facility annual caseload (FAC) and facility annual surgical caseload (FASC) for those undergoing curative surgery was examined. Four volume groups (VG) depending on caseload using both FAC and FASC were defined. These included VG1: below 50th percentile, VG2: 50th−74th percentile, VG3: 75th−89th percentile, and VG4: 90th and above. Between 2006 and 2013, 27,272 patients underwent surgery for localized bladder cancer. The median OS was 59.66 months (95% CI: 57.79−61.77). OS improved significantly as caseload increased. The unadjusted median OS difference between VG1 and VG4 was 15.35 months (64.3 vs. 48.95 months, HR 1.19 95% CI: 1.13−1.25, p < 0.001) for FAC. This figure was 19.84 months (66.89 vs. 47.05 months, HR 1.25 95% CI: 1.18−1.32, p < 0.0001) for FASC. This analysis revealed a significant and clinically important survival advantage for curative bladder cancer surgery at highly experienced centers.

6.
Clin Cancer Res ; 28(21): 4820-4831, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35921526

RESUMEN

PURPOSE: Immune checkpoint inhibitors (ICI) in general have shown poor efficacy in bladder cancer. The purpose of this project was to determine whether photodynamic therapy (PDT) with bladder cancer-specific porphyrin-based PLZ4-nanoparticles (PNP) potentiated ICI. EXPERIMENTAL DESIGN: SV40 T/Ras double-transgenic mice bearing spontaneous bladder cancer and C57BL/6 mice carrying syngeneic bladder cancer models were used to determine the efficacy and conduct molecular correlative studies. RESULTS: PDT with PNP generated reactive oxygen species, and induced protein carbonylation and dendritic cell maturation. In SV40 T/Ras double-transgenic mice carrying spontaneous bladder cancer, the median survival was 33.7 days in the control, compared with 44.8 (P = 0.0123), 52.6 (P = 0.0054), and over 75 (P = 0.0001) days in the anti-programmed cell death-1 antibody (anti-PD-1), PNP PDT, and combination groups, respectively. At Day 75 when all mice in other groups died, only 1 in 7 mice in the combination group died. For the direct anti-tumor activity, compared with the control, the anti-PD-1, PNP PDT, and combination groups induced a 40.25% (P = 0.0003), 80.72% (P < 0.0001), and 93.03% (P < 0.0001) tumor reduction, respectively. For the abscopal anticancer immunity, the anti-PD-1, PNP PDT, and combination groups induced tumor reduction of 45.73% (P = 0.0001), 54.92% (P < 0.0001), and 75.96% (P < 0.0001), respectively. The combination treatment also diminished spontaneous and induced lung metastasis. Potential of immunotherapy by PNP PDT is multifactorial. CONCLUSIONS: In addition to its potential for photodynamic diagnosis and therapy, PNP PDT can synergize immunotherapy in treating locally advanced and metastatic bladder cancer. Clinical trials are warranted to determine the efficacy and toxicity of this combination.


Asunto(s)
Fotoquimioterapia , Neoplasias de la Vejiga Urinaria , Ratones , Animales , Neoplasias de la Vejiga Urinaria/terapia , Línea Celular Tumoral , Ratones Endogámicos C57BL , Inmunoterapia , Fototerapia , Factores Inmunológicos , Ratones Transgénicos
7.
JCI Insight ; 7(16)2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35852858

RESUMEN

Metastatic urothelial carcinoma is generally incurable with current systemic therapies. Chromatin modifiers are frequently mutated in bladder cancer, with ARID1A-inactivating mutations present in about 20% of tumors. EZH2, a histone methyltransferase, acts as an oncogene that functionally opposes ARID1A. In addition, PI3K signaling is activated in more than 20% of bladder cancers. Using a combination of in vitro and in vivo data, including patient-derived xenografts, we show that ARID1A-mutant tumors were more sensitive to EZH2 inhibition than ARID1A WT tumors. Mechanistic studies revealed that (a) ARID1A deficiency results in a dependency on PI3K/AKT/mTOR signaling via upregulation of a noncanonical PI3K regulatory subunit, PIK3R3, and downregulation of MAPK signaling and (b) EZH2 inhibitor sensitivity is due to upregulation of PIK3IP1, a protein inhibitor of PI3K signaling. We show that PIK3IP1 inhibited PI3K signaling by inducing proteasomal degradation of PIK3R3. Furthermore, ARID1A-deficient bladder cancer was sensitive to combination therapies with EZH2 and PI3K inhibitors in a synergistic manner. Thus, our studies suggest that bladder cancers with ARID1A mutations can be treated with inhibitors of EZH2 and/or PI3K and revealed mechanistic insights into the role of noncanonical PI3K constituents in bladder cancer biology.


Asunto(s)
Carcinoma de Células Transicionales , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética , Neoplasias de la Vejiga Urinaria , Proteínas de Unión al ADN/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Transducción de Señal , Factores de Transcripción/metabolismo , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética
8.
Cancer Cytopathol ; 130(9): 667-683, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35653623

RESUMEN

Bladder carcinoma is the most common genitourinary cancer, with a high prevalence and global incidence. In addition to early detection by cytology, the management of bladder cancer has recently advanced, not only by improvements in conventional treatments such as surgery and chemotherapy, but also through the introduction of immunotherapeutic strategies. The number of approved immunotherapeutic agents has dramatically increased, with various preclinical and clinical applications in cancer drug discovery. Some bladder cancer immunotherapies include immune checkpoint inhibitors, adoptive cell therapy, cytokine-based therapy, bispecific antibodies, and antibody-drug conjugates. This review provides an overview of some of the innovative immunotherapeutic agents approved and in development that can potentially be used in the treatment of bladder cancer.


Asunto(s)
Anticuerpos Biespecíficos , Inmunoconjugados , Neoplasias de la Vejiga Urinaria , Anticuerpos Biespecíficos/uso terapéutico , Citocinas/uso terapéutico , Humanos , Inhibidores de Puntos de Control Inmunológico , Inmunoconjugados/uso terapéutico , Inmunoterapia , Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico
9.
NAR Cancer ; 4(2): zcac014, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35475145

RESUMEN

We created the PDX Network (PDXNet) portal (https://portal.pdxnetwork.org/) to centralize access to the National Cancer Institute-funded PDXNet consortium resources, to facilitate collaboration among researchers and to make these data easily available for research. The portal includes sections for resources, analysis results, metrics for PDXNet activities, data processing protocols and training materials for processing PDX data. Currently, the portal contains PDXNet model information and data resources from 334 new models across 33 cancer types. Tissue samples of these models were deposited in the NCI's Patient-Derived Model Repository (PDMR) for public access. These models have 2134 associated sequencing files from 873 samples across 308 patients, which are hosted on the Cancer Genomics Cloud powered by Seven Bridges and the NCI Cancer Data Service for long-term storage and access with dbGaP permissions. The portal includes results from freely available, robust, validated and standardized analysis workflows on PDXNet sequencing files and PDMR data (3857 samples from 629 patients across 85 disease types). The PDXNet portal is continuously updated with new data and is of significant utility to the cancer research community as it provides a centralized location for PDXNet resources, which support multi-agent treatment studies, determination of sensitivity and resistance mechanisms, and preclinical trials.

10.
J Exp Clin Cancer Res ; 41(1): 119, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35361234

RESUMEN

Adoptive cell therapy with chimeric antigen receptor (CAR) immunotherapy has made tremendous progress with five CAR T therapies approved by the US Food and Drug Administration for hematological malignancies. However, CAR immunotherapy in solid tumors lags significantly behind. Some of the major hurdles for CAR immunotherapy in solid tumors include CAR T cell manufacturing, lack of tumor-specific antigens, inefficient CAR T cell trafficking and infiltration into tumor sites, immunosuppressive tumor microenvironment (TME), therapy-associated toxicity, and antigen escape. CAR Natural Killer (NK) cells have several advantages over CAR T cells as the NK cells can be manufactured from pre-existing cell lines or allogeneic NK cells with unmatched major histocompatibility complex (MHC); can kill cancer cells through both CAR-dependent and CAR-independent pathways; and have less toxicity, especially cytokine-release syndrome and neurotoxicity. At least one clinical trial showed the efficacy and tolerability of CAR NK cell therapy. Macrophages can efficiently infiltrate into tumors, are major immune regulators and abundantly present in TME. The immunosuppressive M2 macrophages are at least as efficient as the proinflammatory M1 macrophages in phagocytosis of target cells; and M2 macrophages can be induced to differentiate to the M1 phenotype. Consequently, there is significant interest in developing CAR macrophages for cancer immunotherapy to overcome some major hurdles associated with CAR T/NK therapy, especially in solid tumors. Nevertheless, both CAR NK and CAR macrophages have their own limitations. This comprehensive review article will discuss the current status and the major hurdles associated with CAR T and CAR NK therapy, followed by the structure and cutting-edge research of developing CAR macrophages as cancer-specific phagocytes, antigen presenters, immunostimulators, and TME modifiers.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia , Inmunoterapia Adoptiva/efectos adversos , Macrófagos , Neoplasias/terapia , Linfocitos T , Estados Unidos
11.
Oncologist ; 27(5): e406-e409, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35294031

RESUMEN

Serial evaluation of circulating tumor DNA may allow noninvasive assessment of drivers of resistance to immune checkpoint inhibitors (ICIs) in advanced urothelial cancer (aUC). We used a novel, amplicon-based next-generation sequencing assay to identify genomic alterations (GAs) pre- and post-therapy in 39 patients with aUC receiving ICI and 6 receiving platinum-based chemotherapy (PBC). One or more GA was seen in 95% and 100% of pre- and post-ICI samples, respectively, commonly in TP53 (54% and 54%), TERT (49% and 59%), and BRCA1/BRCA2 (33% and 33%). Clearance of ≥1 GA was seen in 7 of 9 patients responding to ICI, commonly in TP53 (n = 4), PIK3CA (n = 2), and BRCA1/BRCA2 (n = 2). A new GA was seen in 17 of 20 patients progressing on ICI, frequently in BRCA1/BRCA2 (n = 6), PIK3CA (n = 3), and TP53 (n = 3), which seldom emerged in patients receiving PBC. These findings highlight the potential for longitudinal circulating tumor DNA evaluation in tracking response and resistance to therapy.


Asunto(s)
Carcinoma de Células Transicionales , ADN Tumoral Circulante , Neoplasias de la Vejiga Urinaria , Biomarcadores de Tumor/genética , Carcinoma de Células Transicionales/tratamiento farmacológico , Carcinoma de Células Transicionales/genética , ADN Tumoral Circulante/genética , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/uso terapéutico , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inhibidores de Puntos de Control Inmunológico , Masculino , Mutación , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética
12.
J Immunother Cancer ; 9(11)2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34725212

RESUMEN

BACKGROUND: Immune checkpoint blockade (ICB) induces durable response in approximately 20% of patients with advanced bladder urothelial cancer (aUC). Over 50% of aUCs harbor genomic alterations along the phosphoinositide 3-kinase (PI3K) pathway. The goal of this project was to determine the synergistic effects and mechanisms of action of PI3K inhibition and ICB combination in aUC. METHODS: Alterations affecting the PI3K pathway were examined in The Cancer Genome Atlas (TCGA) and the Cancer Dependency Map databases. Human and mouse cells with Pten deletion were used for in vitro studies. C57BL/6 mice carrying syngeneic tumors were used to determine in vivo activity, mechanisms of action and secondary resistance of pan-PI3K inhibition, ICB and combination. RESULTS: Alterations along the PI3K pathway occurred in 57% of aUCs in TCGA. CRISPR (clustered regularly interspaced short palindromic repeats) knockout of PIK3CA induced pronounced inhibition of cell proliferation (p=0.0046). PI3K inhibition suppressed cancer cell growth, migration and colony formation in vitro. Pan-PI3K inhibition, antiprogrammed death 1 (aPD1) therapy and combination improved the overall survival (OS) of syngeneic mice with PTEN-deleted tumors from 27 days of the control to 48, 37, and 65 days, respectively. In mice with tumors not containing a PI3K pathway alteration, OS was prolonged by the combination but not single treatments. Pan-PI3K inhibition significantly upregulated CD80, CD86, MHC-I, and MHC-II in dendritic cells, and downregulated the transforming growth factor beta pathway with a false discovery rate-adjusted q value of 0.001. Interferon alpha response was significantly upregulated with aPD1 therapy (q value: <0.001) and combination (q value: 0.027). Compared with the control, combination treatment increased CD8+ T-cell infiltration (p=0.005), decreased Treg-cell infiltration (p=0.036), and upregulated the expression of multiple immunostimulatory cytokines and granzyme B (p<0.01). Secondary resistance was associated with upregulation of the mammalian target of rapamycin (mTOR) pathway and multiple Sprr family genes. CONCLUSIONS: The combination Pan-PI3K inhibition and ICB has significant antitumor effects in aUC with or without activated PI3K pathway and warrants further clinical investigation. This combination creates an immunostimulatory tumor milieu. Secondary resistance is associated with upregulation of the mTOR pathway and Sprr family genes.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Animales , Línea Celular Tumoral , Proliferación Celular , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Masculino , Ratones , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Transducción de Señal , Neoplasias de la Vejiga Urinaria/patología , Ensayos Antitumor por Modelo de Xenoinjerto
13.
J Hematol Oncol ; 14(1): 156, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34579759

RESUMEN

Immunotherapies such as immune checkpoint blockade (ICB) and adoptive cell therapy (ACT) have revolutionized cancer treatment, especially in patients whose disease was otherwise considered incurable. However, primary and secondary resistance to single agent immunotherapy often results in treatment failure, and only a minority of patients experience long-term benefits. This review article will discuss the relationship between cancer immune response and mechanisms of resistance to immunotherapy. It will also provide a comprehensive review on the latest clinical status of combination therapies (e.g., immunotherapy with chemotherapy, radiation therapy and targeted therapy), and discuss combination therapies approved by the US Food and Drug Administration. It will provide an overview of therapies targeting cytokines and other soluble immunoregulatory factors, ACT, virotherapy, innate immune modifiers and cancer vaccines, as well as combination therapies that exploit alternative immune targets and other therapeutic modalities. Finally, this review will include the stimulating insights from the 2020 China Immuno-Oncology Workshop co-organized by the Chinese American Hematologist and Oncologist Network (CAHON), the China National Medical Product Administration (NMPA) and Tsinghua University School of Medicine.


Asunto(s)
Inmunoterapia/métodos , Neoplasias/terapia , Animales , Vacunas contra el Cáncer/uso terapéutico , Terapia Combinada/métodos , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias/inmunología , Viroterapia Oncolítica/métodos
14.
J Clin Invest ; 131(22)2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34554931

RESUMEN

Bladder cancer is a genetically heterogeneous disease, and novel therapeutic strategies are needed to expand treatment options and improve clinical outcomes. Here, we identified a unique subset of urothelial tumors with focal amplification of the RAF1 (CRAF) kinase gene. RAF1-amplified tumors had activation of the RAF/MEK/ERK signaling pathway and exhibited a luminal gene expression pattern. Genetic studies demonstrated that RAF1-amplified tumors were dependent upon RAF1 activity for survival, and RAF1-activated cell lines and patient-derived models were sensitive to available and emerging RAF inhibitors as well as combined RAF plus MEK inhibition. Furthermore, we found that bladder tumors with HRAS- or NRAS-activating mutations were dependent on RAF1-mediated signaling and were sensitive to RAF1-targeted therapy. Together, these data identified RAF1 activation as a dependency in a subset making up nearly 20% of urothelial tumors and suggested that targeting RAF1-mediated signaling represents a rational therapeutic strategy.


Asunto(s)
Amplificación de Genes , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-raf/genética , Neoplasias de la Vejiga Urinaria/genética , Animales , Línea Celular Tumoral , Femenino , GTP Fosfohidrolasas/genética , Humanos , Proteínas de la Membrana/genética , Ratones , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico
15.
Hematol Oncol Clin North Am ; 35(3): 613-632, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33958154

RESUMEN

At diagnosis, more than 70% of bladder cancers (BCs) are at the non-muscle-invasive bladder cancer (NMIBC) stages, which are usually treated with transurethral resection followed by intravesical instillation. For the remaining advanced cancers, systemic therapy is the standard of care, with addition of radical cystectomy in cases of locally advanced cancer. Because of the difference in treatment modalities, different models are needed to advance the care of NMIBC and advanced BC. This article gives a comprehensive review of both in vitro and in vivo BC models and compares the advantages and drawbacks of these preclinical systems in BC research.


Asunto(s)
Modelos Animales de Enfermedad , Neoplasias de la Vejiga Urinaria , Administración Intravesical , Animales , Línea Celular Tumoral , Cistectomía , Progresión de la Enfermedad , Humanos , Invasividad Neoplásica , Recurrencia Local de Neoplasia , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/cirugía
16.
Sci Rep ; 11(1): 6377, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33737681

RESUMEN

Niclosamide has preclinical activity against a wide range of cancers. In prostate cancer, it inhibits androgen receptor variant 7 and synergizes with abiraterone. The approved niclosamide formulation has poor oral bioavailability. The primary objective of this phase Ib trial was to identify a maximum tolerated dose (MTD) and recommended phase 2 dose (RP2D) of a novel reformulated orally-bioavailable niclosamide/PDMX1001 in combination with abiraterone and prednisone in men with castration-resistant prostate cancer (CRPC). Eligible patients had progressing CRPC, adequate end-organ function, and no prior treatment with abiraterone or ketoconazole. Patients were treated with escalating doses of niclosamide/PDMX1001 and standard doses of abiraterone and prednisone. Peak and trough niclosamide plasma levels were measured. Common Terminology Criteria for Adverse Events (CTCAE) v4.0 and Prostate Cancer Working Group 2 criteria were used to evaluate toxicities and responses. Nine patients with metastatic CRPC were accrued, with no dose-limiting toxicities observed at all dose levels. The recommended Phase II dose of niclosamide/PDMX1001 was 1200 mg orally (PO) three times daily plus abiraterone 1000 mg PO once daily and prednisone 5 mg PO twice daily. Trough and peak niclosamide concentrations exceeded the therapeutic threshold of > 0.2 µM. The combination was well tolerated with most frequent adverse effects of diarrhea. Five out of eight evaluable patients achieved a PSA response; two achieved undetectable PSA and radiographic response. A novel niclosamide/PDMX1001 reformulation achieved targeted plasma levels when combined with abiraterone and prednisone, and was well tolerated. Further study of niclosamide/PDMX1001 with this combination is warranted.


Asunto(s)
Androstenos/administración & dosificación , Niclosamida/administración & dosificación , Prednisona/administración & dosificación , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Anciano , Androstenos/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Supervivencia sin Enfermedad , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/clasificación , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/patología , Humanos , Masculino , Dosis Máxima Tolerada , Persona de Mediana Edad , Niclosamida/efectos adversos , Prednisona/efectos adversos , Antígeno Prostático Específico/sangre , Neoplasias de la Próstata Resistentes a la Castración/sangre , Neoplasias de la Próstata Resistentes a la Castración/patología
17.
Cancer Lett ; 504: 49-57, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33549708

RESUMEN

Bladder cancer (BlCa) exhibits a gender disparity where men are three times more likely to develop the malignancy than women suggesting a role for the androgen receptor (AR). Here we report that BlCa cells express low molecular weight (LMW) AR isoforms that are missing the ligand binding domain (LBD). Isoform expression was detected in most BlCa cells, while a few express the full-length AR. Immunofluorescence studies detect AR in the nucleus and cytoplasm, and localization is cell dependent. Cells with nuclear AR expression exhibit reduced viability and increased apoptosis on total AR depletion. A novel AR-LMW variant, AR-v19, that is missing the LBD and contains 15 additional amino acids encoded by intron 3 sequences was detected in most BlCa malignancies. AR-v19 localizes to the nucleus and can transactivate AR-dependent transcription in a dose dependent manner. AR-v19 depletion impairs cell viability and promotes apoptosis in cells that express this variant. Thus, AR splice variant expression is common in BlCa and instrumental in ensuring cell survival. This suggests that targeting AR or AR downstream effectors may be a therapeutic strategy for the treatment of this malignancy.


Asunto(s)
Apoptosis , Receptores Androgénicos/genética , Neoplasias de la Vejiga Urinaria/patología , Supervivencia Celular , Femenino , Humanos , Masculino , Peso Molecular , Receptores Androgénicos/metabolismo , Neoplasias de la Vejiga Urinaria/metabolismo
18.
Mater Sci Eng C Mater Biol Appl ; 119: 111460, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33321591

RESUMEN

Glycoalkaloids have been widely demonstrated as potential anticancer agents. However, the chemosensitizing effect of these compounds with traditional chemotherapeutic agents has not been explored yet. In a quest for novel effective therapies to treat bladder cancer (BC), we evaluated the chemosensitizing potential of glycoalkaloidic extract (GE) with cisplatin (cDDP) in RT4 and PDX cells using 2D and 3D cell culture models. Additionally, we also investigated the underlying molecular mechanism behind this effect in RT4 cells. Herein, we observed that PDX cells were highly resistant to cisplatin when compared to RT4 cells. IC50 values showed at least 2.16-folds and 1.4-folds higher in 3D cultures when compared to 2D monolayers in RT4 cells and PDX cells, respectively. GE + cDDP inhibited colony formation (40%) and migration (28.38%) and induced apoptosis (57%) in RT4 cells. Combination therapy induced apoptosis by down-regulating the expression of Bcl-2 (p < 0.001), Bcl-xL (p < 0.001) and survivin (p < 0.01), and activating the caspase cascade in RT4 cells. Moreover, decreased expression of MMP-2 and 9 (p < 0.01) were observed with combination therapy, implying its effect on cell invasion/migration. Furthermore, we used 3D bioprinting to grow RT4 spheroids using sodium alginate-gelatin as a bioink and evaluated the effect of GE + cDDP on this system. Cell viability assay showed the chemosensitizing effect of GE with cDDP on bio-printed spheroids. In summary, we showed the cytotoxicity effect of GE on BC cells and also demonstrated that GE could sensitize BC cells to chemotherapy.


Asunto(s)
Antineoplásicos , Neoplasias de la Vejiga Urinaria , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Línea Celular Tumoral , Cisplatino/farmacología , Cisplatino/uso terapéutico , Xenoinjertos , Humanos , Extractos Vegetales/farmacología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico
19.
Adv Ther (Weinh) ; 3(10)2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33072858

RESUMEN

Prognosis of castration-resistant prostate cancer (CRPC) carries is poor, and no effective therapeutic regimen is yet known. The phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway played a predominant role and may be a promising molecular target for CRPC. However, the toxicity of the dual PI3K inhibitors in clinical trials limits their clinical efficacy for CRPC. To solve this problem, we employed a highly integrated precision nanomedicine strategy to molecularly and physically target CRPC through synergistic effects, enhanced targeted drug delivery efficiency, and reduced unwanted side-effects. Gedatolisib (Ge), a potent inhibitor of PI3K/mTOR, was formulated into our disulfied-crosslinked micelle plateform (NanoGe), which exhibits excellent water solubility, small size (23.25±2 nm), excellent stability with redox stimulus-responsive disintegration, and preferential uptake at tumor sites. NanoGe improved the anti-neoplastic effect of free Ge by 53 times in PC-3M cells and 13 times in C4-2B cells though its enhanced uptake via caveolae- and clathrin-mediated endocytic pathways and the subsequent inhibition of the PI3K/mTOR pathway, resulting in Bax/Bcl-2 dependent apoptosis. In an animal xenograft model, NanoGe showed superior efficacy than free Ge, and synergized with nanoformulated cabazitaxel (NanoCa) as a nanococktail format to achieve a cure rate of 83%. Taken together, our results demonstrate the potency of NanoGe in combination with NanoCa is potent against prostate cancer.

20.
Nat Commun ; 11(1): 4591, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32929084

RESUMEN

Although the efficacy of cancer radiotherapy (RT) can be enhanced by targeted immunotherapy, the immunosuppressive factors induced by radiation on tumor cells remain to be identified. Here, we report that CD47-mediated anti-phagocytosis is concurrently upregulated with HER2 in radioresistant breast cancer (BC) cells and RT-treated mouse syngeneic BC. Co-expression of both receptors is more frequently detected in recurrent BC patients with poor prognosis. CD47 is upregulated preferentially in HER2-expressing cells, and blocking CD47 or HER2 reduces both receptors with diminished clonogenicity and augmented phagocytosis. CRISPR-mediated CD47 and HER2 dual knockouts not only inhibit clonogenicity but also enhance macrophage-mediated attack. Dual antibody of both receptors synergizes with RT in control of syngeneic mouse breast tumor. These results provide the evidence that aggressive behavior of radioresistant BC is caused by CD47-mediated anti-phagocytosis conjugated with HER2-prompted proliferation. Dual blockade of CD47 and HER2 is suggested to eliminate resistant cancer cells in BC radiotherapy.


Asunto(s)
Neoplasias de la Mama/metabolismo , Antígeno CD47/metabolismo , Tolerancia a Radiación , Receptor ErbB-2/metabolismo , Animales , Neoplasias de la Mama/patología , Antígeno CD47/genética , Proliferación Celular , Células Clonales , Femenino , Humanos , Células MCF-7 , Macrófagos/metabolismo , Ratones , Modelos Biológicos , FN-kappa B/metabolismo , Fagocitosis , Transducción de Señal , Transcripción Genética , Carga Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA