RESUMEN
Introduction: Human milk is widely acknowledged as the optimal food for infant aged 0 ~ 6 months. While there has been extensive documentation on the mineral and trace element composition of human milk, results on the relationship between mineral content and infant growth remain mixed. This cross-sectional study aims to explore human milk mineral patterns and to investigate associations between human milk mineral patterns, human milk metabolomic profile and infant growth. Methods: A total of 200 breast milk samples from seven cities in China was included. Human milk mineral and trace elements was detected by inductively coupled plasma mass spectrometer (ICP-MS). K-means cluster analysis was utilized to derived human milk mineral patterns. Untargeted human milk metabolomic profiles was determined using high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Differences of infant growth rate and metabolomic profiles were then compared across patterns identified. Results: Three human milk mineral patterns were identified. Cluster I was characterized as the highest levels of potassium, magnesium and calcium, while the lowest levels of copper, zinc, manganese and selenium. Cluster II showed the most abundant sodium, iron, zinc, manganese and selenium. Cluster III had the lowest levels of sodium, potassium, magnesium, iron and calcium. Infants of cluster I showed significantly higher length-for-age z score (0.60 ± 2.03, p = 0.03). Compared with other clusters, samples of cluster I showed lower expression of metabolites of arachidonic acid (ARA) and nicotinate and nicotinamide metabolism pathway. Discussion: A human milk mineral pattern was identified which is related to increased infant growth rate and altered metabolic signature. Future work is needed to understand these human milk patterns in terms of biologic mechanisms and generalization to other populations.
RESUMEN
This scoping review aims to investigate longitudinal changes in minerals and vitamins concentrations in human milk among the Chinese population. Following the PRISMA-ScR guidelines, a comprehensive and systematic literature search was conducted using both English and Chinese databases. Data were extracted and categorized into six defined lactation stages. We found that the concentration of most minerals decreased throughout the lactation period, although calcium (Ca) and magnesium (Mg) fluctuated slightly across lactation periods. Fat-soluble vitamins also showed a decline throughout the lactation period, while water-soluble vitamins exhibited an increasing trend. However, folic acid, biotin, and pantothenic acid demonstrated a downward trend. Overall, this review has identified the longitudinal changes in minerals and vitamins concentrations in human milk among the Chinese population. In order to conduct a more in-depth examination of maternal characteristics and nutritional factors of the composition of human milk, it is recommended to utilize standardized protocols for the collection and analysis of human milk samples.
Asunto(s)
Lactancia , Leche Humana , Minerales , Vitaminas , Humanos , Leche Humana/química , Femenino , Minerales/análisis , Vitaminas/análisis , China , Estudios Longitudinales , Adulto , Pueblos del Este de AsiaRESUMEN
Phospholipids (PLs) and long-chain polyunsaturated fatty acids (LCPUFAs) are naturally present in breast milk and play important roles in promoting the growth of the infant. Several studies have investigated the effects of the combination of PLs and LCPUFAs on neurodevelopment. However, data on the effectiveness of infant formula containing both PLs and LCPUFAs on the neurodevelopment of infants is still scarce. This randomized, double-blind, controlled clinical study was designed to evaluate the effect of an infant formula enriched with PLs and LCPUFAs on growth parameters and neurodevelopmental outcomes in term infants up to 365 days of age. Infants were enrolled within 30 days of birth who were then randomly assigned to either a control group (n = 150) or an investigational group (n = 150). Both groups consist of cow's milk-based formula which were generally identical in terms of composition, except that the investigational formula was additionally supplemented with PLs and LCPUFAs. The infants were followed for the first year of life. Breastfed infants were the reference (n = 150). Bayley Scales of Infant Development [3rd edition (Bayley-III)], Carey Toddler Temperament Scales (TTS), MacArthur-Bates Communicative Development Inventories (CDI), Single Object Attention and Free Play Tasks were used to evaluate neurodevelopmental outcomes of infant at 365 days of age. In addition, Ages and Stages Questionnaires (ASQ) were also conducted at 120, 180, and 275 days of age. Compared to breastfeeding, both infant formulas were well-tolerated and provided adequate growth, with no adverse events being reported throughout the study. Infants of the investigational group showed higher mean scores in Bayley-III cognitive performance (104.3 vs. 99.0, p < 0.05), language (106.9 vs. 104.5, p < 0.05), and motor skills (109.2 vs. 103.9, p < 0.05) compared the control group. Similar results were being reported for other developmental scales including TTS and ASQ. Notably, the test scores of infants fed the investigational formula were similar to those who were breastfed. Our results indicate that PL and LCPUFA supplementation may be beneficial for neurodevelopment of infants throughout the first year of life. Further studies are needed to investigation long-term effects PL and LCPUFA on neurodevelopment in early life.
RESUMEN
Intestinal infections are strongly associated with infant mortality, and intestinal immunoglobulin A (IgA) is important to protect infants from intestinal infections after weaning. This study aims to screen probiotics that can promote the production of intestinal IgA after weaning and further explore their potential mechanisms of action. In this study, probiotics promoting intestinal IgA production were screened in weanling mouse models. The results showed that oral administration of Bifidobacterium bifidum (B. bifidum) FL228.1 and Bifidobacterium bifidum (B. bifidum) FL276.1 significantly enhanced IgA levels in the small intestine and upregulated the expression of a proliferation-inducing ligand (APRIL) and its upstream regulatory factor toll-like receptor 4 (TLR4). Furthermore, B. bifidum FL228.1 upregulated the relative abundance of Lactobacillus, while B. bifidum FL276.1 increased the relative abundance of Marvinbryantia and decreased Mucispirillum, further elevating intestinal IgA levels. In summary, B. bifidum FL228.1 and B. bifidum FL276.1 can induce IgA production in the intestinal tract of weanling mice by promoting intestinal APRIL expression and mediating changes in the gut microbiota, thus playing a significant role in enhancing local intestinal immunity in infants.
Asunto(s)
Bifidobacterium bifidum , Microbioma Gastrointestinal , Inmunoglobulina A , Probióticos , Animales , Femenino , Masculino , Ratones , Bifidobacterium bifidum/fisiología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/inmunología , Intestinos/inmunología , Intestinos/microbiología , Ratones Endogámicos BALB C , Probióticos/farmacología , Probióticos/administración & dosificación , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/genética , Miembro 13 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo , DesteteRESUMEN
The dysfunction of phospholipid metabolism enzymes and the change in membrane phospholipid composition are associated with insulin resistance, indicating that phospholipids play an important role in the regulation of insulin sensitivity. The reflection of phospholipid changes in blood might provide clues for both mechanism understanding and intervention. Using a targeted phospholipidomic approach, 199 phospholipid molecular species were identified and quantified in the plasma of 1053 middle-aged participants from a national investigation. The associations of the phospholipid matrix, clusters, and molecular species with insulin resistance were investigated. A significant association was confirmed between the phospholipid matrix and the homeostatic-model assessment of insulin resistance (HOMA-IR) by a distance-based linear model. Furthermore, three clustered phospholipid modules and 32 phospholipid molecular species were associated with HOMA-IR with the strict control of demographic and lifestyle parameters, family history of diabetes, BMI, WC, and blood lipid parameters. The overall decline in lysophosphatidylcholines (LPCs), the decrease in saturated lysophosphatidylethanolamines (LPEs), the decrease in polyunsaturated/plasmenyl phosphatidylcholines (PCs), and the increase in polyunsaturated phatidylethanolamines (PEs) were the prominent characters of plasma phospholipid perturbation associated with insulin resistance. This suggested that PC- and PE-related metabolic pathways were widely involved in the process of insulin resistance, especially the disorder of LPC acylation to diacyl-PC.
Asunto(s)
Resistencia a la Insulina , Fosfolípidos , Humanos , Fosfolípidos/sangre , China , Masculino , Femenino , Estudios Transversales , Persona de Mediana Edad , Adulto , Enfermedad CrónicaRESUMEN
Human milk oligosaccharides (HMOs) act as a vital role in the development of infant's gut microbiome and immune function. This study aimed to measure 12 oligosaccharides in milk from Chinese donors (n = 203), and evaluated the influences of multiple factors on the HMOs profiles. The results indicated that concentrations of 6'-sialyllactose were the highest among 12 oligosaccharides (2.31 ± 0.81 g/L). HMOs concentrations varied depending on geographical location. Latitude was observed to be related to concentrations of Lacto-N-neohexaose, lacto-N-fucopentaose III, 3'-sialyllactose (r = -0.67, r = +0.63 and r = +0.50, respectively). Environmental factors like seasons correlated with lacto-N-difucohexaose â ¡, Lacto-N-neohexaose and 2'-fucosyllactose (r = -0.47, r = -0.4, r = -0.35, respectively). Several HMOs concentrations were correlated with maternal diet. As a consequence, the HMOs profiles measured were influenced by geographical, environmental, maternal anthropometric as well as dietary factors.
Asunto(s)
Leche Humana , Oligosacáridos , China , Dieta , Humanos , LactanteRESUMEN
The metabolomic profiles of Chinese human milk have been poorly documented. The objective of the study was to explore associations between human milk metabotypes, maternal adiposity, infant growth patterns, and risk of allergies. Two hundred mother−infant dyads from seven cities were randomly selected from the Chinese Human Milk Project (CHMP). Untargeted human milk metabolomic profiles were determined using HPLC-MS/MS. Two human milk metabotypes were identified using principal component analysis. Principal component (PC) 1 was characterized by high linoleic acid metabolites with low purine nucleosides and metabolites of glutamate and glutathione metabolism. PC 2 was characterized by high glycerophospholipids and sphingomyelins content. Higher PC1 scores were associated with slower infant growth rate and higher ambient temperature (p < 0.05). Higher PC 2 scores were related to higher maternal BMI and increased risk of infant allergies (p < 0.05). Future work is needed to understand the biologic mechanisms of these human milk metabotypes.
Asunto(s)
Hipersensibilidad , Obesidad Materna , Adiposidad , China , Femenino , Humanos , Hipersensibilidad/epidemiología , Hipersensibilidad/etiología , Hipersensibilidad/metabolismo , Lactante , Metabolómica , Leche Humana/metabolismo , Espectrometría de Masas en TándemRESUMEN
Different infant diets have strong effects on child development and may engender variations in fecal microbiota and metabolites. The objective of this study was to evaluate the effect of an infant formula containing sn-2 palmitate on fecal microbiota and metabolites in healthy term infants. The study involved three groups as indicated below. Investigational: the group fed a formula containing high sn-2 palmitate for 16 weeks. Control: the group fed a formula using a regular vegetable oil for 16 weeks. Breastfed: the group fed breast milk for 16 weeks. Fecal samples were collected at 8 weeks (n = 35, 37, and 35, respectively) and 16 weeks (n = 30, 32, and 30, respectively) for the control, investigational, and breastfed infants. Microbiota data were obtained using 16S rRNA sequencing. Short-chain fatty acid (SCFA) analysis was performed using GC-MS, and untargeted metabolomics was conducted using LC-MS. The effect of the formula containing sn-2 palmitate was different from that of the control formula on microbiota and metabolites. Sn-2 palmitate promoted the proliferation of Bifidobacterium and reduced the abundance of Escherichia-Shigella at 8 weeks. Furthermore, it increased α-diversity and enhanced acetate content in feces at both 8 and 16 weeks. In the investigational group infants, the abundance of DL-tryptophan, indole-3-acrylic acid, acetyl-ß-methylcholine, L-methionine, and 2-hydroxyvaleric acid significantly increased at 8 weeks, while a notable increase in the abundance of 3-phenyllactic acid, palmitic acid, L-phenylalanine, and leucylproline was observed at 16 weeks. In addition, compared with that of the control infants, the intestinal microbiota and metabolites of sn-2 palmitate-supplemented infants were more similar to those of the breastfed infants. The study hopes to provide a scientific basis for the development of functional infant formulas in the future.
Asunto(s)
Fórmulas Infantiles/química , Palmitatos/química , Bifidobacterium/aislamiento & purificación , Método Doble Ciego , Heces/microbiología , Femenino , Humanos , Recién Nacido , Masculino , Metaboloma , MicrobiotaRESUMEN
BACKGROUND: The infant's intestine contains diverse microbiota, which play an important role in an infant's health. OBJECTIVE: This study aimed to analyze the different intestinal microbiota and their function in two delivery modes [vaginal delivery and cesarean section (C-section)] and to investigate the proprieties of bacteria associated with vaginal delivery on the development of intestinal epithelial cells in rat pups. MATERIALS AND METHODS: We evaluated the intestinal microbial diversity of the stool samples of 51 infants of subjects who underwent vaginal delivery and C-section by sequencing the V4 regions of the 16S rRNA gene and predicted the function of the microbiotas. The infant stool microbiota in the vaginal delivery group was associated with the digestive system and cell growth and death, whereas that of the C-section group was associated with membrane transport. Then, we isolated the strains based on function prediction. RESULTS: A total of 95 strains were isolated in the vaginal delivery group. Bifidobacterium bifidum FL-228.1 (FL-228.1) was screened and selected owing to its good surface hydrophobicity, bacterial survivability in the simulated gastrointestinal condition and adhesion ability to the IEC-6 cell line as well as owing to the development of intestinal epithelial cells. Furthermore, in vivo experiments revealed that FL-228.1 exhibited favorable effects on the development of intestinal epithelial cells in rat pups. CONCLUSION: The results of this study indicate an apparent difference in the bacterial composition of the stool samples collected from infants of the two delivery modes. By analyzing and screening the bacteria in infant stool samples, we found that one strain, i.e., B bifidum FL-228.1, exhibited favorable effects on the development of intestinal epithelial cells.
RESUMEN
Human milk (HM) is the golden standard of infant nutrition that can protect immature body function and enhance nutrition metabolism to ensure infant growth. Region specificity and lactation period could change the protein composition in HM. In this research, proteomics analysis was used to compare proteomes across eight cities, namely Harbin, Lanzhou, Guangzhou, Chengdu, Jinhua, Weihai, Zhengzhou, and Beijing, which represented the northeast, northwest, southeast, southwest, east, and north and central regions of China,. Proteins varied significantly among the cities. These different proteins were mainly involved in the process of platelet degranulation, innate immune response, and triglyceride metabolic process, which might be due to different living environments. These differences also lead to variation in protection and fat metabolism from mothers to infants in different cities. Four proteins were expressed differently during 6 months of lactation, namely Dipeptidyl peptidase 1, Lysozyme C, Carbonic anhydrase 6, and Chordin-like protein 2. The changes in these proteins might be because of the change of growth needs of the infants. The findings from our results might help to improve the understanding of HM as well as to design infant formula.
RESUMEN
SCOPE: The aim of the present study is to identify human milk pattern using multi-omics datasets and to explore association between patterns, infant growth, and allergy using data from the Chinese Human Milk Project (CHMP) study. METHODS AND RESULTS: Three patterns are identified from integrative analysis of proteome, lipidome, and glycome profiles of 143 mature human milk samples. Factor 1 is positively associated with 128 proteins, phospholipids, and human milk oligosaccharides (HMOs) including lacto N-neohexaose (LNnH) and lacto-N-difucohexaose II (LNDFH II); factor 2 is negatively associated with as1 -casein, phospholipids while positively associates with HMOs including LNnH, lactosialyl tetrasaccharide c (LSTc), and 2'-fucosyllactose (2'FL); factor 3 is positively associated with lysophospholipids while negatively associates with 27 proteins, triglycerides with two saturated fatty acids, 6'-sialyllactose (6'SL) and 2'FL. In general, factor 1 and factor 2 are associated with slower while factor 3 is associated with faster growth rate (p < 0.044). One unit higher in loadings of factor 2 is associated with 34% lower risk of allergies (p ≤ 0.017). Associations are not significant after adjustment for city except for factor 1. CONCLUSIONS: Three possible human milk patterns with varying degree of stability are identified. Future work is needed to understand these patterns in terms of generalization, biologic mechanisms, and genotype influences.
Asunto(s)
Desarrollo Infantil , Leche Humana/química , Adulto , China , Femenino , Hipersensibilidad a los Alimentos , Humanos , Lactante , Recién Nacido , Modelos Lineales , Masculino , Edad Materna , Proteínas de la Leche/análisis , Leche Humana/inmunología , Oligosacáridos/análisis , Fosfolípidos/análisis , Fosfolípidos/químicaRESUMEN
Maternal factors such as the diet can impact human milk fatty acid profiles. We hypothesized that mature human milk fatty acid profiles differ among regions of China. To test our hypothesis, we conducted a systematic review to calculate regional average contents of fatty acids and the statistical significance of regional differences in fatty acids. We searched both Chinese and English literature databases and selected 21 articles, including 11 in Chinese and 10 in English. We categorized regions of China by 3 ways: 1) north vs. south; 2) inland vs. coastal; 3) socioeconomic development levels. The ratios of ΣSFAs:ΣMUFAs:ΣPUFAs were similar between regions and the average was 1:1:0.7. Contents of palmitic, oleic, and linoleic acids were also similar between regions and together they accounted for more than 70% of all fatty acids in mature human milk. Conversely, concentrations of ALA and DHA differed more than palmitic, oleic, and linoleic acids. We also found that it might be necessary to reduce maternal dietary contents of potentially harmful fatty acids such as erucic acid to minimize detrimental effects on infant health. To our knowledge, this study represents the first systematic review that quantitatively investigated the regional similarities and differences in mature human milk fatty acid contents and is therefore significant for academia and policy makers.
Asunto(s)
Ácidos Grasos/metabolismo , Conducta Alimentaria , Lactancia , Leche Humana/metabolismo , Pueblo Asiatico , China , Femenino , HumanosRESUMEN
This study aims to investigate the correlation between the ability of L. acidophilus to modulate miRNA expression and prevent Th17-dominated ß-lactoglobulin (ß-Lg) allergy. In vitro immunomodulation was evaluated by measuring splenocyte proliferation, Th17-related immune response and miRNA expression in ß-Lg-sensitized splenocytes cultured with live L. acidophilus. Next, the allergic mouse model was used to evaluate anti-allergy capability of lactobacilli. The ß-Lg challenge led to induction of up-regulation of miR-146a, miR-155, miR-21 and miR-9 expression in both in vivo and in vitro, along with increased Th17-related cytokine levels and mRNA expression of RORγt and IL-17. However, treatment of live L. acidophilus significantly suppressed hypersensitivity responses and Th17 cell differentiation. Moreover, administration of live L. acidophilus reduced expression of four miRNAs, especially miR-146a and miR-155. In addition, the decreased expression of the miRNAs in the spleen of the L. acidophilus-treated group was closely associated with decrease of IL-17 and RORγt mRNA expression.