Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 273: 116100, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38367607

RESUMEN

Chlorothalonil (CTL) is widely used in agricultural production and antifoulant additive globally due to its broad spectrum and non-systemic properties, resulting in its widespread existence in foods, soil and water. Extensive evidence demonstrated that exposure to CTL induced adverse effects on organisms and in particular its reproductive toxicity has been attracted public concern. However, the influences of CTL on oocyte maturation is mysterious so far. In this study, we documented the toxic effects of CTL on oocyte in vitro maturation and the related underlying mechanisms. Exposure to CTL caused continuous activation of spindle assembly checkpoints (SAC) which in turn compromised meiotic maturation in mouse oocyte, featured by the attenuation of polar body extrusion (PBE). Detection of cytoskeletal dynamics demonstrated that CTL exposure weakened the acetylation level of α-tubulin and impaired meiotic spindle apparatus, which was responsible for the aberrant state of SAC. Meanwhile, exposure to CTL damaged the function of mitochondria, inducing the decline of ATP content and the elevation of reactive oxygen species (ROS), which thereby induced early apoptosis and DNA damage in mouse oocytes. In addition, exposure to CTL caused the alteration of the level of histone H3 methylation, indicative of the harmful effects of CTL on epigenetic modifications in oocytes. Further, the CTL-induced oxidative stress activated mitogen-activated protein kinase (MAPK) pathway and injured the maturation of oocytes. In summary, exposure to CTL damaged mouse oocyte in vitro maturation via destroying spindle assembly, inducing oxidative stress and triggering MAPK pathway activation.


Asunto(s)
Técnicas de Maduración In Vitro de los Oocitos , Proteínas Quinasas Activadas por Mitógenos , Nitrilos , Animales , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Estrés Oxidativo , Oocitos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Apoptosis
2.
Free Radic Biol Med ; 195: 158-177, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36586451

RESUMEN

BACKGROUND AND OBJECTIVE: Imbalance of oxidative stress has been detected in a range of fibrotic diseases. Melatonin as an indoleamine hormone plays an important role in regulating the circadian rhythm of human, while in recent years, its antioxidant effect has also attracted increasing attention. This study aimed to perform a systematic review and meta-analysis to comprehensively evaluate the antioxidant effect of melatonin in animal models of fibrosis. METHODS: The PubMed, Cochrane Library, EMBASE, Web of Science, China National Knowledge Infrastructure (CNKI), Wanfang database, China Science and Technology Journal Database (VIP), and SinoMed databases were searched from inception to March 1st, 2022 to retrieve eligible studies that evaluated the effect of melatonin supplementation on the levels of malondialdehyde (MDA), lipid peroxidation (LPO), nitric oxide (NO), superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GPx), and catalase (CAT) in animal models of fibrosis. RESULTS: A total of 64 studies were included in this meta-analysis. The results showed that melatonin supplementation significantly reduced the levels of oxidative indicators including MDA (P < 0.00001), LPO (P < 0.00001) and NO (P < 0.0001), and elevated the levels of antioxidant indicators including GSH (P < 0.00001), GPx (P < 0.00001) and SOD (P < 0.00001) in fibrotic diseases. CONCLUSIONS: Our research findings showed that melatonin supplementation could significantly reduce the levels of oxidative indicators including MDA, LPO and NO and elevate the levels of antioxidant indicators including GSH, GPx and SOD so as to correct oxidative stress in animal models of fibrosis. However, no significant changes were observed in CAT level. More clinical studies are needed to further confirm the beneficial role of melatonin in fibrotic diseases.


Asunto(s)
Antioxidantes , Melatonina , Animales , Humanos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Melatonina/farmacología , Estrés Oxidativo , Catalasa/metabolismo , Glutatión/metabolismo , Superóxido Dismutasa/metabolismo , Fibrosis , Óxido Nítrico/farmacología , Modelos Animales , Glutatión Peroxidasa/metabolismo , Malondialdehído/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA