Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 383, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724888

RESUMEN

Taxus chinensis (Taxus cuspidata Sieb. et Zucc.) is a traditional medicinal plant known for its anticancer substance paclitaxel, and its growth age is also an important factor affecting its medicinal value. However, how age affects the physiological and metabolic characteristics and active substances of T. chinensis is still unclear. In this study, carbon and nitrogen accumulation, contents of active substances and changes in primary metabolites in barks and annual leaves of T. chinensis of different diameter classes were investigated by using diameter classes instead of age. The results showed that leaves and barks of small diameter class (D1) had higher content of non-structural carbohydrates and C, which were effective in enhancing defense capacity, while N content was higher in medium (D2) and large diameter classes (D3). Active substances such as paclitaxel, baccatin III and cephalomannine also accumulated significantly in barks of large diameter classes. Moreover, 21 and 25 differential metabolites were identified in leaves and barks of different diameter classes, respectively. The differential metabolites were enhanced the TCA cycle and amino acid biosynthesis, accumulate metabolites such as organic acids, and promote the synthesis and accumulation of active substances such as paclitaxel in the medium and large diameter classes. These results revealed the carbon and nitrogen allocation mechanism of different diameter classes of T. chinensis, and its relationship with medicinal components, providing a guidance for the harvesting and utilization of wild T. chinensis.


Asunto(s)
Carbono , Metabolómica , Nitrógeno , Hojas de la Planta , Taxus , Taxus/metabolismo , Nitrógeno/metabolismo , Carbono/metabolismo , Hojas de la Planta/metabolismo , Corteza de la Planta/metabolismo , Corteza de la Planta/química
2.
Metabolites ; 13(12)2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38132875

RESUMEN

Asarum (Asarum sieboldii Miq. f. seoulense (Nakai) C. Y. Cheng et C. S. Yang) is a medicinal plant that contains asarinin and sesamin, which possess extensive medicinal value. The adaptation and distribution of Asarum's plant growth are significantly affected by altitude. Although most studies on Asarum have concentrated on its pharmacological activities, little is known about its growth and metabolites with respect to altitude. In this study, the physiology, ionomics, and metabolomics were investigated and conducted on the leaves and roots of Asarum along an altitude gradient, and the content of its medicinal components was determined. The results showed that soil pH and temperature both decreased along the altitude, which restricts the growth of Asarum. The accumulation of TOC, Cu, Mg, and other mineral elements enhanced the photosynthetic capacity and leaf plasticity of Asarum in high-altitude areas. A metabolomics analysis revealed that, at high altitude, nitrogen metabolism in leaves was enhanced, while carbon metabolism in roots was enhanced. Furthermore, the metabolic pathways of some phenolic substances, including syringic acid, vanillic acid, and ferulic acid, were altered to enhance the metabolism of organic acids. The study uncovered the growth and metabolic responses of Asarum to varying altitudes, providing a theoretical foundation for the utilization and cultivation of Asarum.

3.
J Pharm Biomed Anal ; 188: 113368, 2020 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-32544758

RESUMEN

Panax ginseng is one of the most valuable medicinal plants in the world, and wild-forest (WG) and artificial-forest (AG) ginseng are very popular in the ginseng market, with ginsenosides constituting a majority of the bioactives. Research on the biochemical and physiological patterns of metabolic accumulation in different tissues of ginseng cultivated under various conditions is relatively scarce. We profiled metabolites using GC/MS and LC/MS to explore the bioactive component changes and interrelationships that occur in 7 tissues of WG and AG. In total, 149 primary metabolites and 46 secondary compounds were found in aboveground and belowground tissues. Metabolite changes associated with primary and secondary biochemistry were observed, and the levels of ginsenoside F2 and other compounds showed a significant correlation by statistical analysis in ginseng under both cultivation methods, as observed for secondary compounds and C and N metabolites. In addition, the number of secondary components was higher in the aboveground parts than in the belowground parts, showing a different pattern, and the same accumulation pattern of compounds involved in C and N metabolism was observed in individual plant tissues, but the high rate of photosynthesis and energy metabolism in WG provided energy for the biosynthesis of secondary compounds. Furthermore, artificial neural network models explained the variation in the secondary compounds very well via the combination of several different metabolites from WG and AG. Finally, C and N metabolism plays a key role in secondary compound biosynthesis in specific tissues and cultivation conditions and highlights large-scale metabolite patterns in WG and AG.


Asunto(s)
Ginsenósidos , Panax , Plantas Medicinales , Cromatografía Liquida , Cromatografía de Gases y Espectrometría de Masas , Ginsenósidos/análisis , Espectrometría de Masas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA