Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Innovation (Camb) ; 4(4): 100454, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37388193

RESUMEN

The cotton bollworm, Helicoverpa armigera, is set to become the most economically devastating crop pest in the world, threatening food security and biosafety as its range expands across the globe. Key to understanding the eco-evolutionary dynamics of H. armigera, and thus its management, is an understanding of population connectivity and the adaptations that allow the pest to establish in unique environments. We assembled a chromosome-scale reference genome and re-sequenced 503 individuals spanning the species range to delineate global patterns of connectivity, uncovering a previously cryptic population structure. Using a genome-wide association study (GWAS) and cell line expression of major effect loci, we show that adaptive changes in a temperature- and light-sensitive developmental pathway enable facultative diapause and that adaptation of trehalose synthesis and transport underlies cold tolerance in extreme environments. Incorporating extensive pesticide resistance monitoring, we also characterize a suite of novel pesticide and Bt resistance alleles under selection in East China. These findings offer avenues for more effective management strategies and provide insight into how insects adapt to variable climatic conditions and newly colonized environments.

3.
Front Genet ; 11: 593688, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33304389

RESUMEN

BACKGROUND: The NONO gene is located on chromosome Xq13.1 and encodes a nuclear protein involved in RNA synthesis, transcriptional regulation, and DNA repair. Hemizygous variants in NONO have been reported to cause mental retardation, X-linked, syndromic 34 (MRXS34) in males. Due to the scarcity of clinical reports, the clinical characteristics and mutation spectrum of NONO-related disorder have not been entirely determined. METHODS: We reported a fetus with hypoplastic left heart syndrome, performed a comprehensive genotyping examination, including copy-number variation sequencing and whole-exome sequencing, and screened for the genetic abnormality. We also conducted an in vitro mini-gene splicing assay to demonstrate the predicted deleterious effects of an intronic variant of NONO. RESULTS: Exome sequencing identified a novel intronic variant (c.154 + 9A > G) in intron 4 of the NONO gene (NM_001145408.1). It was predicted to insert 4 bp of intron 4 into the mature mRNA. Minigene assay revealed that the c.154 + 9A > G variant caused the activation of the intronic cryptic splice site and 4 bp insertion (c.154_155ins GTGT) in mature mRNA. Literature review shows that cardiac phenotype, including left ventricular non-compaction cardiomyopathy and congenital heart disease, are consistent features of MRXS34. CONCLUSION: This study enlarges the mutation spectrum of NONO, further expands hypoplastic left heart syndrome to the phenotype of MRXS34 and points out the importance of intronic sequence analysis and the need for integrative functional studies in the interpretation of sequence variants.

4.
Sci Rep ; 7(1): 3788, 2017 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-28630475

RESUMEN

In crop plants, a high-density genetic linkage map is essential for both genetic and genomic researches. The complexity and the large size of wheat genome have hampered the acquisition of a high-resolution genetic map. In this study, we report a high-density genetic map based on an individual mapping population using the Affymetrix Wheat660K single-nucleotide polymorphism (SNP) array as a probe in hexaploid wheat. The resultant genetic map consisted of 119 566 loci spanning 4424.4 cM, and 119 001 of those loci were SNP markers. This genetic map showed good collinearity with the 90 K and 820 K consensus genetic maps and was also in accordance with the recently released wheat whole genome assembly. The high-density wheat genetic map will provide a major resource for future genetic and genomic research in wheat. Moreover, a comparative genomics analysis among gramineous plant genomes was conducted based on the high-density wheat genetic map, providing an overview of the structural relationships among theses gramineous plant genomes. A major stable quantitative trait locus (QTL) for kernel number per spike was characterized, providing a solid foundation for the future high-resolution mapping and map-based cloning of the targeted QTL.


Asunto(s)
Mapeo Cromosómico , Sitios Genéticos , Polimorfismo de Nucleótido Simple , Semillas/genética , Triticum/genética
5.
Theor Appl Genet ; 130(6): 1235-1252, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28349175

RESUMEN

KEY MESSAGE: The temporal and spatial expression patterns of stable QTL for plant height and their influences on yield were characterized. Plant height (PH) is a complex trait in wheat (Triticum aestivum L.) that includes the spike length (SL) and the internode lengths from the first to the fifth internode, which are counted from the top and abbreviated as FIRITL, SECITL, THIITL, FOUITL, and FIFITL, respectively. This study identified eight putative additive quantitative trait loci (QTL) for PH. In addition, unconditional and conditional QTL mapping were used to analyze the temporal and spatial expression patterns of five stable QTL for PH. qPh-3A mainly regulated SL, FIRITL, and FIFITL to affect PH during the booting-heading stage (BS-HS); qPh-3D regulated all internode lengths to affect PH, especially during the BS-HS; before HS, qPh-4B mainly affected FIRITL, SECITL, THIITL, and FOUITL and qPh-5A.1 mainly affected SECITL, THIITL, and FOUITL to regulate PH; and qPh-6B mainly regulated FIRITL to affect the PH after the booting stage (BS). qPhdv-4B, a QTL for the response of PH to nitrogen stress, was stable and co-localized with qPh-4B. All five stable QTL, except for qPh-3A, were related to the 1000 kernel weight and yield per plant. Regions of qPh-3A, qPh-3D, qPh-4B, qPh-5A.1, and qPh-6B showed synteny to parts of rice chromosomes 1, 1, 3, 9, and 2, respectively. Based on comparative genomics analysis, Rht-B1b was cloned and mapped in the CI of qPh-4B. This report provides useful information for fine mapping of the stable QTL for PH and the genetic improvement of wheat plant type.


Asunto(s)
Sitios de Carácter Cuantitativo , Triticum/crecimiento & desarrollo , Triticum/genética , Mapeo Cromosómico , Fenotipo , Análisis Espacio-Temporal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA