Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
ACS Nano ; 18(11): 7711-7738, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38427687

RESUMEN

Sepsis, a common life-threatening clinical condition, continues to have high morbidity and mortality rates, despite advancements in management. In response, significant research efforts have been directed toward developing effective strategies. Within this scope, nanotechnology has emerged as a particularly promising field, attracting significant interest for its potential to enhance disease diagnosis and treatment. While several reviews have highlighted the use of nanoparticles in sepsis, comprehensive studies that summarize and analyze the hotspots and research trends are lacking. To identify and further promote the development of nanotechnology in sepsis, a bibliometric analysis was conducted on the relevant literature, assessing research trends and hotspots in the application of nanomaterials for sepsis. Next, a comprehensive review of the subjectively recognized research hotspots in sepsis, including nanotechnology-enhanced biosensors and nanoscale imaging for sepsis diagnostics, and nanoplatforms designed for antimicrobial, immunomodulatory, and detoxification strategies in sepsis therapy, is elucidated, while the potential side effects and toxicity risks of these nanomaterials were discussed. Particular attention is given to biomimetic nanoparticles, which mimic the biological functions of source cells like erythrocytes, immune cells, and platelets to evade immune responses and effectively deliver therapeutic agents, demonstrating substantial translational potential. Finally, current challenges and future perspectives of nanotechnology applications in sepsis with a view to maximizing their great potential in the research of translational medicine are also discussed.


Asunto(s)
Nanopartículas , Nanoestructuras , Sepsis , Humanos , Nanotecnología/métodos , Nanoestructuras/uso terapéutico , Nanopartículas/uso terapéutico , Diagnóstico por Imagen , Sepsis/diagnóstico , Sepsis/terapia
2.
Curr Med Sci ; 43(6): 1096-1106, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37924386

RESUMEN

OBJECTIVE: The activation state of microglia is known to occupy a central position in the pathophysiological process of cerebral inflammation. Autophagy is a catabolic process responsible for maintaining cellular homeostasis. In recent years, autophagy has been demonstrated to play an important role in neuroinflammation. Resolvin D1 (RvD1) is a promising therapeutic mediator that has been shown to exert substantial anti-inflammatory and proresolving activities. However, whether RvD1-mediated resolution of inflammation in microglia is related to autophagy regulation needs further investigation. The present study aimed to explore the effect of RvD1 on microglial autophagy and its corresponding pathways. METHODS: Mouse microglial cells (BV-2) were cultured, treated with RvD1, and examined by Western blotting, confocal immunofluorescence microscopy, transmission electron microscopy, and flow cytometry. RESULTS: RvD1 promoted autophagy in both BV-2 cells and mouse primary microglia by favoring the maturation of autophagosomes and their fusion with lysosomes. Importantly, RvD1 had no significant effect on the activation of mammalian target of rapamycin (mTOR) signaling. Furthermore, RvD1-induced mTOR-independent autophagy was confirmed by observing reduced cytoplasmic calcium levels and suppressed calcium/calmodulin-dependent protein kinase II (CaMK II) activation. Moreover, by downregulating ATG5, the increased phagocytic activity induced by RvD1 was demonstrated to be tightly controlled by ATG5-dependent autophagy. CONCLUSION: The present work identified a previously unreported mechanism responsible for the role of RvD1 in microglial autophagy, highlighting its therapeutic potential against neuroinflammation.


Asunto(s)
Microglía , Enfermedades Neuroinflamatorias , Ratones , Animales , Calcio/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Autofagia , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Mamíferos
3.
Front Cell Infect Microbiol ; 13: 1120769, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37124033

RESUMEN

Sepsis is identified as a potentially lethal organ impairment triggered by an inadequate host reaction to infection (Sepsis-3). Viral sepsis is a potentially deadly organ impairment state caused by the host's inappropriate reaction to a viral infection. However, when a viral infection occurs, the metabolism of the infected cell undergoes a variety of changes that cause the host to respond to the infection. But, until now, little has been known about the challenges faced by cellular metabolic alterations that occur during viral infection and how these changes modulate infection. This study concentrates on the alterations in glucose metabolism during viral sepsis and their impact on viral infection, with a view to exploring new potential therapeutic targets for viral sepsis.


Asunto(s)
Glucosa , Sepsis , Humanos , Glucosa/metabolismo , Viremia , Metabolismo de los Hidratos de Carbono
5.
Oxid Med Cell Longev ; 2022: 1328729, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36062193

RESUMEN

Dysregulated host response to infection, which cause life-threatening organ dysfunction, was defined as sepsis. Sepsis can cause acute and long-term brain dysfunction, namely, sepsis-associated encephalopathy (SAE) and cognitive impairment. SAE refers to changes in consciousness without direct evidence of central nervous system infection. It is highly prevalent and may cause poor outcomes in sepsis patients. Cognitive impairment seriously affects the life quality of sepsis patients and increases the medical burden. The pathogenesis of sepsis-induced brain dysfunction is mainly characterized by the interaction of systemic inflammation, blood-brain barrier (BBB) dysfunction, neuroinflammation, microcirculation dysfunction, and brain dysfunction. Currently, the diagnosis of sepsis-induced brain dysfunction is based on clinical manifestation of altered consciousness along with neuropathological examination, and the treatment is mainly involves controlling sepsis. Although treatments for sepsis-induced brain dysfunction have been tested in animals, clinical treat sepsis-induced brain dysfunction is still difficult. Therefore, we review the underlying mechanisms of sepsis-induced brain injury, which mainly focus on the influence of systemic inflammation on BBB, neuroinflammation, brain microcirculation, and the brain function, which want to bring new mechanism-based directions for future basic and clinical research aimed at preventing or ameliorating brain dysfunction.


Asunto(s)
Lesiones Encefálicas , Encefalopatía Asociada a la Sepsis , Sepsis , Animales , Encéfalo/patología , Lesiones Encefálicas/complicaciones , Inflamación/patología , Sepsis/complicaciones , Sepsis/diagnóstico , Sepsis/tratamiento farmacológico , Encefalopatía Asociada a la Sepsis/complicaciones , Encefalopatía Asociada a la Sepsis/diagnóstico , Encefalopatía Asociada a la Sepsis/terapia
6.
Front Cell Infect Microbiol ; 12: 962470, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35967847

RESUMEN

Intensive care unit (ICU)-acquired infection is a common cause of poor prognosis of sepsis in the ICU. However, sepsis-associated ICU-acquired infections have not been fully characterized. The study aims to assess the risk factors and develop a model that predicts the risk of ICU-acquired infections in patients with sepsis. Methods: We retrieved data from the Medical Information Mart for Intensive Care (MIMIC) IV database. Patients were randomly divided into training and validation cohorts at a 7:3 ratio. A multivariable logistic regression model was used to identify independent risk factors that could predict ICU-acquired infection. We also assessed its discrimination and calibration abilities and compared them with classical score systems. Results: Of 16,808 included septic patients, 2,871 (17.1%) developed ICU-acquired infection. These patients with ICU-acquired infection had a 17.7% ICU mortality and 31.8% in-hospital mortality and showed a continued rise in mortality from 28 to 100 days after ICU admission. The classical Systemic Inflammatory Response Syndrome Score (SIRS), Sequential Organ Failure Assessment (SOFA), Oxford Acute Severity of Illness Score (OASIS), Simplified Acute Physiology Score II (SAPS II), Logistic Organ Dysfunction Score (LODS), Charlson Comorbidity Index (CCI), and Acute Physiology Score III (APS III) scores were associated with ICU-acquired infection, and cerebrovascular insufficiency, Gram-negative bacteria, surgical ICU, tracheostomy, central venous catheter, urinary catheter, mechanical ventilation, red blood cell (RBC) transfusion, LODS score and anticoagulant therapy were independent predictors of developing ICU-acquired infection in septic patients. The nomogram on the basis of these independent predictors showed good calibration and discrimination in both the derivation (AUROC = 0.737; 95% CI, 0.725-0.749) and validation (AUROC = 0.751; 95% CI, 0.734-0.769) populations and was superior to that of SIRS, SOFA, OASIS, SAPS II, LODS, CCI, and APS III models. Conclusions: ICU-acquired infections increase the likelihood of septic mortality. The individualized prognostic model on the basis of the nomogram could accurately predict ICU-acquired infection and optimize management or tailored therapy.


Asunto(s)
Puntuaciones en la Disfunción de Órganos , Sepsis , Humanos , Unidades de Cuidados Intensivos , Estudios Retrospectivos , Factores de Riesgo , Sepsis/epidemiología
9.
Front Med (Lausanne) ; 8: 694754, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34676222

RESUMEN

To investigate the characteristics of SARS-CoV-2 pneumonia and evaluate whether CT scans, especially at a certain CT level, could be used to predict the severity of SARS-CoV-2 pneumonia. In total 118 confirmed patients had been enrolled. All data including epidemiological, clinical characteristics, laboratory results, and images were collected and analyzed when they were administrated for the first time. All patients were divided into two groups. There were 106 severe/critical patients and 12 common ones. A total of 38 of the patients were women. The mean age was 50.5 ± 11.5 years. Overall, 80 patients had a history of exposure. The median time from onset of symptoms to administration was 8.0 days. The main symptoms included fever, cough, anorexia, fatigue, myalgia, headaches, and chills. Lymphocytes and platelets decreased and lactate dehydrogenase increased with increased diseased severity (P < 0.05). Calcium and chloride ions were decreased more significantly in severe/critical patients than in common ones (P < 0.05). The main comorbidities were diabetes, chronic cardiovascular disease, and chronic pulmonary disease, which occurred in 47 patients. In all 69 patients had respiratory failure, which is the most common SARS-CoV-2 complication, and liver dysfunction presented in 37 patients. Nine patients received mechanical ventilation therapy. One patient received continuous blood purification and extracorporeal membrane oxygenation (EMCO) treatments. The average stay was 18.1 ± 10.8 days. Four patients died. The median of the radiographic score was four in common, and five in the severe/critical illness, which was a significant difference between the two groups. The radiographic score was in negative correlation with OI (ρ = -0.467, P < 0.01). The OI in severe/critically ill cases decreased significantly as the disease progressed, which was related to the lesion area in the left lung and right lungs (ρ = 0.688, R = 0.733). OI, the lesion area in the left lung and right lungs, lymphocytes, etc. were associated with different degrees of SARS-CoV-2 pneumonia (P < 0.05). The lesion area in both lungs were possible predictive factors for severe/critical cases. Patients with SARS-CoV-2 pneumonia showed obvious clinical manifestations and laboratory result changes. Combining clinical features and the quantity of the lesion area in the fourth level of CT could effectively predict severe/critical SARS-CoV-2 cases.

10.
Hereditas ; 158(1): 13, 2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33863396

RESUMEN

BACKGROUND: Sepsis and septic shock are life-threatening diseases with high mortality rate in intensive care unit (ICU). Acute kidney injury (AKI) is a common complication of sepsis, and its occurrence is a poor prognostic sign to septic patients. We analyzed co-differentially expressed genes (co-DEGs) to explore relationships between septic shock and AKI and reveal potential biomarkers and therapeutic targets of septic-shock-associated AKI (SSAKI). METHODS: Two gene expression datasets (GSE30718 and GSE57065) were downloaded from the Gene Expression Omnibus (GEO). The GSE57065 dataset included 28 septic shock patients and 25 healthy volunteers and blood samples were collected within 0.5, 24 and 48 h after shock. Specimens of GSE30718 were collected from 26 patients with AKI and 11 control patents. AKI-DEGs and septic-shock-DEGs were identified using the two datasets. Subsequently, Gene Ontology (GO) functional analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and protein-protein interaction (PPI) network analysis were performed to elucidate molecular mechanisms of DEGs. We also evaluated co-DEGs and corresponding predicted miRNAs involved in septic shock and AKI. RESULTS: We identified 62 DEGs in AKI specimens and 888, 870, and 717 DEGs in septic shock blood samples within 0.5, 24 and 48 h, respectively. The hub genes of EGF and OLFM4 may be involved in AKI and QPCT, CKAP4, PRKCQ, PLAC8, PRC1, BCL9L, ATP11B, KLHL2, LDLRAP1, NDUFAF1, IFIT2, CSF1R, HGF, NRN1, GZMB, and STAT4 may be associated with septic shock. Besides, co-DEGs of VMP1, SLPI, PTX3, TIMP1, OLFM4, LCN2, and S100A9 coupled with corresponding predicted miRNAs, especially miR-29b-3p, miR-152-3p, and miR-223-3p may be regarded as promising targets for the diagnosis and treatment of SSAKI in the future. CONCLUSIONS: Septic shock and AKI are related and VMP1, SLPI, PTX3, TIMP1, OLFM4, LCN2, and S100A9 genes are significantly associated with novel biomarkers involved in the occurrence and development of SSAKI.


Asunto(s)
Lesión Renal Aguda/genética , Choque Séptico/genética , Biomarcadores , Estudios de Casos y Controles , Biología Computacional , Perfilación de la Expresión Génica , Ontología de Genes , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Mapas de Interacción de Proteínas
11.
Eur Heart J Acute Cardiovasc Care ; 10(1): 6-15, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33620438

RESUMEN

AIMS: To investigate the association between levels of highly sensitive troponin I (hs-troponin I) and mortality in novel coronavirus disease 2019 (COVID-19) patients with cardiac injury. METHODS AND RESULTS: We retrospectively reviewed the medical records of all COVID-19 patients with increased levels of hs-troponin I from two hospitals in Wuhan, China. Demographic information, laboratory test results, cardiac ultrasonographic findings, and electrocardiograms were collected, and their predictive value on in-hospital mortality was explored using multivariable logistic regression. Of 1500 patients screened, 242 COVID-19 patients were enrolled in our study. Their median age was 68 years, and (48.8%) had underlying cardiovascular diseases. One hundred and seventy-six (72.7%) patients died during hospitalization. Multivariable logistic regression showed that C-reactive protein (>75.5 mg/L), D-dimer (>1.5 µg/mL), and acute respiratory distress syndrome were risk factors of mortality, and the peak hs-troponin I levels (>259.4 pg/mL) instead of the hs-troponin I levels at admission was predictor of death. The area under the receiver operating characteristic curve of the peak levels of hs-troponin I for predicting in-hospital mortality was 0.79 (95% confidence interval, 0.73-0.86; sensitivity, 0.80; specificity, 0.72; P < 0.0001). CONCLUSION: Our results demonstrated that the risk of in-hospital death among COVID-19 patients with cardiac injury can be predicted by the peak levels of hs-troponin I during hospitalization and was significantly associated with oxygen supply-demand mismatch, inflammation, and coagulation.


Asunto(s)
COVID-19/sangre , COVID-19/mortalidad , Cardiopatías/sangre , Cardiopatías/mortalidad , Mortalidad Hospitalaria , Troponina I/sangre , Anciano , COVID-19/complicaciones , Femenino , Cardiopatías/etiología , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Estudios Retrospectivos , Sensibilidad y Especificidad
12.
Cell Biosci ; 11(1): 13, 2021 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-33422128

RESUMEN

Mechanotransduction couples mechanical stimulation with ion flux, which is critical for normal biological processes involved in neuronal cell development, pain sensation, and red blood cell volume regulation. Although they are key mechanotransducers, mechanosensitive ion channels in mammals have remained difficult to identify. In 2010, Coste and colleagues revealed a novel family of mechanically activated cation channels in eukaryotes, consisting of Piezo1 and Piezo2 channels. These have been proposed as the long-sought-after mechanosensitive cation channels in mammals. Piezo1 and Piezo2 exhibit a unique propeller-shaped architecture and have been implicated in mechanotransduction in various critical processes, including touch sensation, balance, and cardiovascular regulation. Furthermore, several mutations in Piezo channels have been shown to cause multiple hereditary human disorders, such as autosomal recessive congenital lymphatic dysplasia. Notably, mutations that cause dehydrated hereditary xerocytosis alter the rate of Piezo channel inactivation, indicating the critical role of their kinetics in normal physiology. Given the importance of Piezo channels in understanding the mechanotransduction process, this review focuses on their structural details, kinetic properties and potential function as mechanosensors. We also briefly review the hereditary diseases caused by mutations in Piezo genes, which is key for understanding the function of these proteins.

14.
Immunity ; 53(5): 1108-1122.e5, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33128875

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic is a global public health crisis. However, little is known about the pathogenesis and biomarkers of COVID-19. Here, we profiled host responses to COVID-19 by performing plasma proteomics of a cohort of COVID-19 patients, including non-survivors and survivors recovered from mild or severe symptoms, and uncovered numerous COVID-19-associated alterations of plasma proteins. We developed a machine-learning-based pipeline to identify 11 proteins as biomarkers and a set of biomarker combinations, which were validated by an independent cohort and accurately distinguished and predicted COVID-19 outcomes. Some of the biomarkers were further validated by enzyme-linked immunosorbent assay (ELISA) using a larger cohort. These markedly altered proteins, including the biomarkers, mediate pathophysiological pathways, such as immune or inflammatory responses, platelet degranulation and coagulation, and metabolism, that likely contribute to the pathogenesis. Our findings provide valuable knowledge about COVID-19 biomarkers and shed light on the pathogenesis and potential therapeutic targets of COVID-19.


Asunto(s)
Infecciones por Coronavirus/sangre , Infecciones por Coronavirus/patología , Plasma/metabolismo , Neumonía Viral/sangre , Neumonía Viral/patología , Adulto , Anciano , Anciano de 80 o más Años , Betacoronavirus , Biomarcadores/sangre , Proteínas Sanguíneas/metabolismo , COVID-19 , Infecciones por Coronavirus/clasificación , Infecciones por Coronavirus/metabolismo , Femenino , Humanos , Aprendizaje Automático , Masculino , Persona de Mediana Edad , Pandemias/clasificación , Neumonía Viral/clasificación , Neumonía Viral/metabolismo , Proteómica , Reproducibilidad de los Resultados , SARS-CoV-2
15.
Virol Sin ; 35(6): 768-775, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32865701

RESUMEN

Convalescent plasma therapy has been implemented in a few cases of severe coronavirus disease 2019. No report about convalescent plasma therapy in treating patients with prolonged positivity of SARS-CoV-2 RNA has been published. In this study, we conducted a retrospective observational study in 27 patients with prolonged positivity of SARS-CoV-2 RNA, the clinical benefit of convalescent plasma therapy were analyzed. qRT-PCR test of SARS-CoV-2 RNA turned negative (≤ 7 days) in a part of patients (early negative group, n = 15) after therapy, others (late negative group, n = 12) turned negative in more than 7 days. Pulmonary imaging improvement was confirmed in 7 patients in early negative group and 8 in late negative group after CP therapy. Viral load decreased in early negative group compared with late negative group at day 3, 5, 7 after implementing convalescent plasma therapy. Patients in early negative group had a shorter median length of hospital stay. In conclusion, convalescent plasma therapy might help eliminate virus and shorten length of hospital stay in patients with prolonged positivity of SARS-CoV-2 RNA.


Asunto(s)
COVID-19/terapia , Inmunización Pasiva/métodos , ARN Viral/inmunología , SARS-CoV-2/inmunología , Anciano , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , COVID-19/diagnóstico por imagen , COVID-19/epidemiología , COVID-19/inmunología , China/epidemiología , Femenino , Humanos , Tiempo de Internación , Masculino , Persona de Mediana Edad , ARN Viral/sangre , Estudios Retrospectivos , SARS-CoV-2/genética , Carga Viral , Sueroterapia para COVID-19
16.
Cell Immunol ; 356: 104192, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32853967

RESUMEN

BACKGROUND: CD4+CD25+FoxP3+ T helper cells (Tregs), a subgroup of CD4+ T helper cells, are critical effectors that protect against acute lung injury (ALI) by contact-dependent suppression or releasing anti-inflammatory cytokines including interleukin-10 (IL-10), and transforming growth factor (TGF-ß). HMGB1 (High mobility group box 1 protein) was identified as a nuclear non-histone DNA-binding chromosomal protein, which participates in the regulation of lung inflammatory response and pathological processes in ALI. Previous studies have suggested that Tregs overexpresses the HMGB1-recognizing receptor. However, the interaction of HMGB1 with Tregs in ALI is still unclear. OBJECTIVE: To investigate whether HMGB1 aggravates ALI by suppressing immunosuppressive function of Tregs. METHODS: Anti-HMGB1 antibody and recombinant mouse HMGB1 (rHMGB1) were administered in lipopolysaccharide (LPS)-induced ALI mice and polarized LPS-primed Tregs in vitro. The Tregs pre-stimulated with or without rHMGB1 were adoptively transferred to ALI mice and depleted by Diphtheria toxin (DT). For coculture experiment, isolated Tregs were first pre-stimulated with or without rHMGB1 or anti-HMGB1 antibody, then they were cocultured with bone marrow-derived macrophages (BMMs) under LPS stimulation. RESULTS: Tregs protected against acute lung pathological injury. HMGB1 modulated the suppressive function of Tregs as follows: reduction in the number of the cells and the activity of Tregs, the secretion of anti-inflammatory cytokines (IL-10, TGF-ß) from Tregs, the production of IL-2 from CD4+ T cells and CD11c+ DCs, and the M2 polarization of macrophages, as well as inducing proinflammatory response of macrophages. CONCLUSIONS: HMGB1 could aggravate LPS induced-ALI through suppressing the activity and function of Tregs.


Asunto(s)
Lesión Pulmonar Aguda/inmunología , Proteína HMGB1/inmunología , Linfocitos T Reguladores/inmunología , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Proteína HMGB1/metabolismo , Proteína HMGB1/fisiología , Interleucina-10/inmunología , Lipopolisacáridos/farmacología , Pulmón/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Linfocitos T Reguladores/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
17.
Virol Sin ; 35(6): 744-751, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32720214

RESUMEN

The coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has spread around the world with high mortality. To diagnose promptly and accurately is the vital step to effectively control its pandemic. Dynamic characteristics of SARS-CoV-2-specific antibodies which are important for diagnosis of infection have not been fully demonstrated. In this retrospective, single-center, observational study, we enrolled the initial 131 confirmed cases of COVID-19 at Jin-Yin-Tan Hospital who had at least one-time antibody tested during their hospitalization. The dynamic changes of IgM and IgG antibodies to SARS-CoV-2 nucleocapsid protein in 226 serum samples were detected by ELISA. The sensitivities of IgM and IgG ELISA detection were analyzed. Result showed that the sensitivity of the IgG ELISA detection (92.5%) was significantly higher than that of the IgM (70.8%) (P < 0.001). The meantimes of seroconversion for IgM and IgG were 6 days and 3 days, respectively. The IgM and IgG antibody levels peaked at around 18 days and 23 days, and then IgM fell to below the baseline level at about day 36, whereas IgG maintained at a relatively high level. In conclusion, antibodies should be detected to aid in diagnosis of COVID-19 infection. IgG could be a sensitive indicator for retrospective diagnosis and contact tracing, while IgM could be an indicator of early infection.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Antivirales/sangre , COVID-19/sangre , COVID-19/diagnóstico , COVID-19/epidemiología , Prueba Serológica para COVID-19/métodos , China/epidemiología , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Inmunoglobulina M/sangre , Inmunoglobulina M/inmunología , Masculino , Persona de Mediana Edad , Proteínas de la Nucleocápside/inmunología , Pandemias , Estudios Retrospectivos , Adulto Joven
18.
Front Immunol ; 11: 1104, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32636835

RESUMEN

Background: High-mobility group box 1 protein (HMGB1) was identified as a highly conserved DNA binding nuclear protein, which participates in the processes of acute lung injury (ALI). HMGB1 binds to its specific receptors not only to activate the nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) pathways but also to regulate the activation of the phosphatidylinositol 3'-kinase/protein kinase B/mammalian target of the rapamycin (PI3K/AKT/mTOR) pathway. Mature dendritic cells (DCs) regulate acute lung inflammation and pathological injury in ALI. In addition, studies have shown that the activation of the PI3K/AKT/mTOR signaling pathway may regulate the function and maturation of DCs. Objective: Therefore, we speculate that HMGB1/PI3K/Akt/mTOR signaling participates in regulating the pathological process of ALI by regulating the maturation and function of DCs. Methods: Anti-HMGB1 antibody, rHMGB1, or LY294002 (PI3K inhibitor) was administered in a murine model of lipopolysaccharide (LPS)-induced ALI. For in vitro studies, generated bone marrow-derived dendritic cells (BMDCs) primed by LPS were stimulated with the same reagents. The effects of these different treatments were observed on the expression of PI3K, AKT, and mTOR and on the function of DCs. Results: HMGB1 upregulated the expression of PI3K, Akt, and mTOR mRNA and phosphorylated proteins in BMDCs. The HMGB1/PI3K/Akt/mTOR signaling pathway induced the maturation and antigen-presenting ability of lung DCs, mediated the percentage of myeloid DCs (mDCs), and enhanced the adhesion and chemotactic ability of lung DCs. Conclusions: HMGB1/PI3K/Akt/mTOR signaling participates in the pathological process of ALI by regulating the maturation and functions of DCs.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Proteína HMGB1/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Lesión Pulmonar Aguda/inmunología , Animales , Diferenciación Celular/inmunología , Cromonas/farmacología , Células Dendríticas/patología , Modelos Animales de Enfermedad , Técnicas In Vitro , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Morfolinas/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología
19.
Lancet Respir Med ; 8(5): 475-481, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32105632

RESUMEN

BACKGROUND: An ongoing outbreak of pneumonia associated with the severe acute respiratory coronavirus 2 (SARS-CoV-2) started in December, 2019, in Wuhan, China. Information about critically ill patients with SARS-CoV-2 infection is scarce. We aimed to describe the clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia. METHODS: In this single-centered, retrospective, observational study, we enrolled 52 critically ill adult patients with SARS-CoV-2 pneumonia who were admitted to the intensive care unit (ICU) of Wuhan Jin Yin-tan hospital (Wuhan, China) between late December, 2019, and Jan 26, 2020. Demographic data, symptoms, laboratory values, comorbidities, treatments, and clinical outcomes were all collected. Data were compared between survivors and non-survivors. The primary outcome was 28-day mortality, as of Feb 9, 2020. Secondary outcomes included incidence of SARS-CoV-2-related acute respiratory distress syndrome (ARDS) and the proportion of patients requiring mechanical ventilation. FINDINGS: Of 710 patients with SARS-CoV-2 pneumonia, 52 critically ill adult patients were included. The mean age of the 52 patients was 59·7 (SD 13·3) years, 35 (67%) were men, 21 (40%) had chronic illness, 51 (98%) had fever. 32 (61·5%) patients had died at 28 days, and the median duration from admission to the intensive care unit (ICU) to death was 7 (IQR 3-11) days for non-survivors. Compared with survivors, non-survivors were older (64·6 years [11·2] vs 51·9 years [12·9]), more likely to develop ARDS (26 [81%] patients vs 9 [45%] patients), and more likely to receive mechanical ventilation (30 [94%] patients vs 7 [35%] patients), either invasively or non-invasively. Most patients had organ function damage, including 35 (67%) with ARDS, 15 (29%) with acute kidney injury, 12 (23%) with cardiac injury, 15 (29%) with liver dysfunction, and one (2%) with pneumothorax. 37 (71%) patients required mechanical ventilation. Hospital-acquired infection occurred in seven (13·5%) patients. INTERPRETATION: The mortality of critically ill patients with SARS-CoV-2 pneumonia is considerable. The survival time of the non-survivors is likely to be within 1-2 weeks after ICU admission. Older patients (>65 years) with comorbidities and ARDS are at increased risk of death. The severity of SARS-CoV-2 pneumonia poses great strain on critical care resources in hospitals, especially if they are not adequately staffed or resourced. FUNDING: None.


Asunto(s)
Infecciones por Coronavirus/mortalidad , Infecciones por Coronavirus/terapia , Neumonía Viral/mortalidad , Neumonía Viral/terapia , Adulto , Anciano , Anciano de 80 o más Años , Betacoronavirus/aislamiento & purificación , COVID-19 , China/epidemiología , Infecciones por Coronavirus/epidemiología , Enfermedad Crítica , Femenino , Humanos , Unidades de Cuidados Intensivos/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/epidemiología , Neumonía Viral/virología , Respiración Artificial/estadística & datos numéricos , Síndrome de Dificultad Respiratoria/mortalidad , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria/virología , Estudios Retrospectivos , SARS-CoV-2 , Resultado del Tratamiento
20.
Front Microbiol ; 11: 600989, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33424804

RESUMEN

SARS-coronavirus-2-induced immune dysregulation and inflammatory responses are involved in the pathogenesis of coronavirus disease-2019 (COVID-19). However, very little is known about immune cell and cytokine alterations in specific organs of COVID-19 patients. Here, we evaluated immune cells and cytokines in postmortem tissues, i.e., lungs, intestine, liver, kidneys, and spleen of three patients with COVID-19. Imaging mass cytometry revealed monocyte, macrophage, and dendritic cell (DC) infiltration in the lung, intestine, kidney, and liver tissues. Moreover, in patients with COVID-19, natural killer T cells infiltrated the liver, lungs, and intestine, whereas B cells infiltrated the kidneys, lungs, and intestine. CD11b+ macrophages and CD11c+ DCs also infiltrated the lungs and intestine, a phenomenon that was accompanied by overproduction of the immunosuppressive cytokine interleukin (IL)-10. However, CD11b+ macrophages and CD11c+ DCs in the lungs or intestine of COVID-19 patients did not express human leukocyte antigen DR isotype. In contrast, tumor necrosis factor (TNF)-α expression was higher in the lungs, intestine, liver, and kidneys, but not in the spleen, of all COVID-19 patients (compared to levels in controls). Collectively, these findings suggested that IL-10 and TNF-α as immunosuppressive and pro-inflammatory agents, respectively,-might be prognostic and could serve as therapeutic targets for COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA