Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 268
Filtrar
1.
Orthop Surg ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39224927

RESUMEN

OBJECTIVE: Hip fracture (HF) has been described as the "last fracture of life" in the elderly, so the assessment of HF risk is extremely important. Currently, few studies have examined the relationship between imaging data from chest computed tomography (CT) and HF. This study demonstrated that pectoral muscle index (PMI) and vertebral body attenuation values could predict HF, aiming to opportunistically assess the risk of HF in patients without bone mineral density (BMD) based on chest CT for other diseases. METHODS: In the retrospective study, 800 participants who had both BMD and chest CT were enrolled from January 2021 to January 2024. After exclusion, 472 patients were finally enrolled, divided into the healthy control (HC) group and the HF group. Clinical data were collected, and differences between the two groups were compared. A predictive model was constructed based on the PMI and CT value of the fourth thoracic vertebra (T4HU) by logistic regression analysis, and the predictive effect of the model was analyzed by using the receiver operating characteristic (ROC) curve. Finally, the clinical utility of the model was analyzed using decision curve analysis (DCA) and clinical impact curves. RESULTS: Both PMI and T4HU were lower in the HF group than in the HC group (p < 0.05); low PMI and low T4HU were risk factors for HF. The predictive model incorporating PMI and T4HU on the basis of age and BMI had excellent diagnostic efficacy with an area under the curve (AUC) of 0.865 (95% confidence interval [CI]: 0.830-0.894, p < 0.01), sensitivity and specificity of 0.820 and 0.754, respectively. The clinical utility of the model was validated using calibration curves and DCA. The AUC of the predictive model incorporating BMD based on age and BMI was 0.865 (95% CI: 0.831-0.895, p < 0.01), with sensitivity and specificity of 0.698 and 0.711, respectively. There was no significant difference in diagnostic efficacy between the two models (p = 0.967). CONCLUSIONS: PMI and T4HU are predictors of HF in patients. In the absence of dual-energy x-ray absorptiometry (DXA), the risk of HF can be assessed by measuring the PMI and T4HU on chest CT examination due to other diseases, and further treatment can be provided in time to reduce the incidence of HF.

2.
Signal Transduct Target Ther ; 9(1): 249, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300073

RESUMEN

Lenvatinib is a targeted drug used for first-line treatment of hepatocellular carcinoma (HCC). A deeper insight into the resistance mechanism of HCC against lenvatinib is urgently needed. In this study, we aimed to dissect the underlying mechanism of lenvatinib resistance (LR) and provide effective treatment strategies. We established an HCC model of acquired LR. Cell counting, migration, self-renewal ability, chemoresistance and expression of stemness genes were used to detect the stemness of HCC cells. Molecular and biochemical strategies such as RNA-sequencing, immunoprecipitation, mass spectrometry and ubiquitination assays were used to explore the underlying mechanisms. Patient-derived HCC models and HCC samples from patients were used to demonstrate clinical significance. We identified that increased cancer stemness driven by the hypoxia-inducible factor-1α (HIF-1α) pathway activation is responsible for acquired LR in HCC. Phosphorylated non-muscle myosin heavy chain 9 (MYH9) at Ser1943, p-MYH9 (Ser1943), could recruit ubiquitin-specific protease 22 (USP22) to deubiquitinate and stabilize HIF-1α in lenvatinib-resistant HCC. Clinically, p-MYH9 (Ser1943) expression was upregulated in HCC samples, which predicted poor prognosis and LR. A casein kinase-2 (CK2) inhibitor and a USP22 inhibitor effectively reversed LR in vivo and in vitro. Therefore, the p-MYH9 (Ser1943)/USP22/HIF-1α axis is critical for LR and cancer stemness. For the diagnosis and treatment of LR in HCC, p-MYH9 (Ser1943), USP22, and HIF-1α might be valuable as novel biomarkers and targets.


Asunto(s)
Carcinoma Hepatocelular , Resistencia a Antineoplásicos , Subunidad alfa del Factor 1 Inducible por Hipoxia , Neoplasias Hepáticas , Células Madre Neoplásicas , Compuestos de Fenilurea , Quinolinas , Ubiquitina Tiolesterasa , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Humanos , Quinolinas/farmacología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Compuestos de Fenilurea/farmacología , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Ratones , Línea Celular Tumoral , Animales , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Masculino
3.
Pharmaceutics ; 16(7)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39065640

RESUMEN

Neuroblastoma (NB) is a cancer of the peripheral nervous system found in children under 15 years of age. It is the most frequently diagnosed cancer during infancy, accounting for ~12% of all cancer-related deaths in children. Leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5) is a membrane receptor that is associated with the primary tumor formation and metastasis of cancers in the gastrointestinal system. Remarkably, high levels of LGR5 are found in NB tumor cells, and high LGR5 expression is strongly correlated with poor survival. Antibody-drug conjugates (ADCs) are monoclonal antibodies that are covalently linked to cell-killing cytotoxins to deliver the payloads into cancer cells. We generated an ADC with an anti-LGR5 antibody and pyrrolobenzodiazepine (PBD) dimer-based payload SG3199 using a chemoenzymatic conjugation method. The resulting anti-LGR5 ADC was able to inhibit the growth of NB cells expressing LGR5 with high potency and specificity. Importantly, the ADC was able to completely inhibit the growth of NB xenograft tumors in vivo at a clinically relevant dose for the PBD class of ADCs. The findings support the potential of targeting LGR5 using the PBD class of payload for the treatment of high-risk NBs.

5.
Microb Cell ; 11: 278, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39081906

RESUMEN

The PD-1/PD-L1 pathway plays a pivotal role in T cell activity and is involved in the pathophysiology of Mycobacterium tuberculosis (MTB) infection. DNA methylation is a mechanism that modulates PD-L1 expression in cancer cells. However, its effect on PD-L1 expression in macrophages after MTB infection remains unknown. We prospectively enrolled patients with active tuberculosis (TB) and non-TB subjects. The expression of PD-L1 and methylation-related genes in peripheral blood mononuclear cells (PBMCs) were investigated and their correlation with disease severity and treatment outcomes were examined. PD-L1 promoter methylation status was evaluated using bisulfite sequencing. Immunohistochemistry (IHC) and immunofluorescence (IF) staining were used to visualize PD-L1- and TET-1-expressing cells in lung tissues from patients with TB and in macrophage cell lines with MTB-related stimulation. In total, 80 patients with active TB and 40 non-TB subjects were enrolled in the analysis. Patients with active TB had significantly higher expression of PD-L1, DNMT3b, TET1, TET2, and lower expression of DNMT1, compared to that in the non-TB subjects. The expression of PD-L1 and TET-1 was significantly associated with 1-month smear and culture non-conversion. IHC and IF staining demonstrated the co-localization of PD-L1- and TET-1-expressing macrophages in patients with pulmonary TB and in human macrophage cell lines after MTB-related stimulation. DNMT inhibition and TET-1 knockdown in human macrophages increased and decreased PD-L1 expression, respectively. Overall, PD-L1 expression is increased in patients with active TB and is correlated with treatment outcomes. DNA methylation is involved in modulating PD-L1 expression in human macrophages.

6.
Cell Mol Life Sci ; 81(1): 283, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963422

RESUMEN

Protein SUMOylation is a prevalent stress-response posttranslational modification crucial for maintaining cellular homeostasis. Herein, we report that protein SUMOylation modulates cellular signaling mediated by cAMP, an ancient and universal stress-response second messenger. We identify K561 as a primary SUMOylation site in exchange protein directly activated by cAMP (EPAC1) via site-specific mapping of SUMOylation using mass spectrometry. Sequence and site-directed mutagenesis analyses reveal that a functional SUMO-interacting motif in EPAC1 is required for the binding of SUMO-conjugating enzyme UBC9, formation of EPAC1 nuclear condensate, and EPAC1 cellular SUMOylation. Heat shock-induced SUMO modification of EPAC1 promotes Rap1/2 activation in a cAMP-independent manner. Structural modeling and molecular dynamics simulation studies demonstrate that SUMO substituent on K561 of EPAC1 promotes Rap1 interaction by increasing the buried surface area between the SUMOylated receptor and its effector. Our studies identify a functional SUMOylation site in EPAC1 and unveil a novel mechanism in which SUMOylation of EPAC1 leads to its autonomous activation. The findings of SUMOylation-mediated activation of EPAC1 not only provide new insights into our understanding of cellular regulation of EPAC1 but also will open up a new field of experimentation concerning the cross-talk between cAMP/EPAC1 signaling and protein SUMOylation, two major cellular stress response pathways, during cellular homeostasis.


Asunto(s)
AMP Cíclico , Factores de Intercambio de Guanina Nucleótido , Sumoilación , Enzimas Ubiquitina-Conjugadoras , Proteínas de Unión al GTP rap1 , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/química , Humanos , AMP Cíclico/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Proteínas de Unión al GTP rap1/metabolismo , Proteínas de Unión al GTP rap1/genética , Células HEK293 , Simulación de Dinámica Molecular , Complejo Shelterina/metabolismo , Transducción de Señal , Proteínas de Unión a Telómeros/metabolismo , Proteínas de Unión al GTP rap/metabolismo , Proteínas de Unión al GTP rap/genética , Respuesta al Choque Térmico , Secuencia de Aminoácidos , Unión Proteica
7.
J Orthop Res ; 42(8): 1631-1640, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38897819

RESUMEN

Proteomics is a growing field that offers insights into various aspects of disease processes and therapy responses. Within the field of orthopedics, there are a variety of diseases that have a poor prognosis due to a lack of targeted curative therapy or disease modifying therapy. Other diseases have been difficult to manage in part due to lack of clinical biomarkers that offer meaningful insight into disease progression or severity. As an emerging technology, proteomics has been increasingly applied in studying bone biology and an assortment of orthopedics related diseases, such as osteoarthritis, osteosarcoma and bone tumors, osteoporosis, traumatic bone injury, spinal cord injury, hip and knee arthroplasty, and fragile healing. These efforts range from mechanistic studies for elucidating novel insights in tissue activity and metabolism to identification of candidate biomarkers for diagnosis, prognosis, and targeted treatment. The knowledge gained from these proteomic and functional studies has provided unique perspectives in studying orthopedic diseases. In this review, we seek to report on the current state of the proteomic study in the field of orthopedics, overview the advances in clinically applicable discoveries, and discuss the opportunities that may guide us for future research.


Asunto(s)
Proteómica , Humanos , Investigación Biomédica Traslacional , Ortopedia , Animales , Biomarcadores/metabolismo
8.
Trends Immunol ; 45(7): 523-534, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38944621

RESUMEN

Basophils, rare granulocytes, have long been acknowledged for their roles in type 2 immune responses. However, the mechanisms by which basophils adapt their functions to diverse mammalian microenvironments remain unclear. Recent advancements in specific research tools and single-cell-based technologies have greatly enhanced our understanding of basophils. Several studies have shown that basophils play a role in maintaining homeostasis but can also contribute to pathology in various tissues and organs, including skin, lung, and others. Here, we provide an overview of recent basophil research, including cell development, characteristics, and functions. Based on an increasing understanding of basophil biology, we suggest that the precise targeting of basophil features might be beneficial in alleviating certain pathologies such as asthma, atopic dermatitis (AD), and others.


Asunto(s)
Basófilos , Diferenciación Celular , Basófilos/inmunología , Humanos , Animales , Diferenciación Celular/inmunología , Dermatitis Atópica/inmunología , Asma/inmunología , Homeostasis/inmunología
9.
Proteomics ; : e2400078, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38824665

RESUMEN

The human gut microbiome plays a vital role in preserving individual health and is intricately involved in essential functions. Imbalances or dysbiosis within the microbiome can significantly impact human health and are associated with many diseases. Several metaproteomics platforms are currently available to study microbial proteins within complex microbial communities. In this study, we attempted to develop an integrated pipeline to provide deeper insights into both the taxonomic and functional aspects of the cultivated human gut microbiomes derived from clinical colon biopsies. We combined a rapid peptide search by MSFragger against the Unified Human Gastrointestinal Protein database and the taxonomic and functional analyses with Unipept Desktop and MetaLab-MAG. Across seven samples, we identified and matched nearly 36,000 unique peptides to approximately 300 species and 11 phyla. Unipept Desktop provided gene ontology, InterPro entries, and enzyme commission number annotations, facilitating the identification of relevant metabolic pathways. MetaLab-MAG contributed functional annotations through Clusters of Orthologous Genes and Non-supervised Orthologous Groups categories. These results unveiled functional similarities and differences among the samples. This integrated pipeline holds the potential to provide deeper insights into the taxonomy and functions of the human gut microbiome for interrogating the intricate connections between microbiome balance and diseases.

10.
J Orthop Surg Res ; 19(1): 335, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38845012

RESUMEN

BACKGROUND: Existing studies have shown that computed tomography (CT) attenuation and skeletal muscle tissue are strongly associated with osteoporosis; however, few studies have examined whether vertebral HU values and the pectoral muscle index (PMI) measured at the level of the 4th thoracic vertebra (T4) are strongly associated with bone mineral density (BMD). In this study, we demonstrate that vertebral HU values and the PMI based on chest CT can be used to opportunistically screen for osteoporosis and reduce fracture risk through prompt treatment. METHODS: We retrospectively evaluated 1000 patients who underwent chest CT and DXA scans from August 2020-2022. The T4 HU value and PMI were obtained using manual chest CT measurements. The participants were classified into normal, osteopenia, and osteoporosis groups based on the results of dual-energy X-ray (DXA) absorptiometry. We compared the clinical baseline data, T4 HU value, and PMI between the three groups of patients and analyzed the correlation between the T4 HU value, PMI, and BMD to further evaluate the diagnostic efficacy of the T4 HU value and PMI for patients with low BMD and osteoporosis. RESULTS: The study ultimately enrolled 469 participants. The T4 HU value and PMI had a high screening capacity for both low BMD and osteoporosis. The combined diagnostic model-incorporating sex, age, BMI, T4 HU value, and PMI-demonstrated the best diagnostic efficacy, with areas under the receiver operating characteristic curve (AUC) of 0.887 and 0.892 for identifying low BMD and osteoporosis, respectively. CONCLUSIONS: The measurement of T4 HU value and PMI on chest CT can be used as an opportunistic screening tool for osteoporosis with excellent diagnostic efficacy. This approach allows the early prevention of osteoporotic fractures via the timely screening of individuals at high risk of osteoporosis without requiring additional radiation.


Asunto(s)
Absorciometría de Fotón , Densidad Ósea , Osteoporosis , Músculos Pectorales , Vértebras Torácicas , Tomografía Computarizada por Rayos X , Humanos , Femenino , Osteoporosis/diagnóstico por imagen , Masculino , Vértebras Torácicas/diagnóstico por imagen , Estudios Retrospectivos , Persona de Mediana Edad , Tomografía Computarizada por Rayos X/métodos , Anciano , Absorciometría de Fotón/métodos , Músculos Pectorales/diagnóstico por imagen , Tamizaje Masivo/métodos , Anciano de 80 o más Años , Radiografía Torácica/métodos , Adulto
11.
Biochemistry ; 63(14): 1723-1729, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38941592

RESUMEN

Protein advanced glycation end products (AGEs) can be formed via nonenzymatic glycation and accumulated intracellularly to disrupt cellular homeostasis for protein clearance. Here, we investigated the formation particulars of intracellular protein AGEs and sought to elucidate the molecular events implicated in the impact of cellular clearance systems. The formation and accumulation of intracellular protein AGEs increased protein aggregation and protease resistance, potentially overwhelming the ubiquitin-proteasome system (UPS). At high levels of protein AGEs, the abundance of many E3 ligases decreased and the overall ubiquitination level was reduced, all of which indicated decreased UPS activity. On the other hand, autophagy activity was stimulated, as evidenced by the upregulation of autophagy marker LC3II and important proteins in autophagosome and autolysosome formation, as well as downregulation of mTOR. Understanding the functional impacts of intracellular protein AGEs on the UPS and autophagy could pave the way for the future development of pharmaceutical agents targeting AGE-related diseases.


Asunto(s)
Autofagia , Productos Finales de Glicación Avanzada , Homeostasis , Productos Finales de Glicación Avanzada/metabolismo , Humanos , Autofagia/fisiología , Células Epiteliales/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitinación , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales
12.
Emerg Infect Dis ; 30(6): 1115-1124, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38781680

RESUMEN

The World Health Organization's end TB strategy promotes the use of symptom and chest radiograph screening for tuberculosis (TB) disease. However, asymptomatic early states of TB beyond latent TB infection and active disease can go unrecognized using current screening criteria. We conducted a longitudinal cohort study enrolling household contacts initially free of TB disease and followed them for the occurrence of incident TB over 1 year. Among 1,747 screened contacts, 27 (52%) of the 52 persons in whom TB subsequently developed during follow-up had a baseline abnormal radiograph. Of contacts without TB symptoms, persons with an abnormal radiograph were at higher risk for subsequent TB than persons with an unremarkable radiograph (adjusted hazard ratio 15.62 [95% CI 7.74-31.54]). In young adults, we found a strong linear relationship between radiograph severity and time to TB diagnosis. Our findings suggest chest radiograph screening can extend to detecting early TB states, thereby enabling timely intervention.


Asunto(s)
Composición Familiar , Tamizaje Masivo , Radiografía Torácica , Humanos , Perú/epidemiología , Masculino , Femenino , Adulto , Adolescente , Adulto Joven , Tamizaje Masivo/métodos , Estudios Longitudinales , Persona de Mediana Edad , Niño , Tuberculosis Pulmonar/epidemiología , Tuberculosis Pulmonar/diagnóstico , Tuberculosis Pulmonar/diagnóstico por imagen , Trazado de Contacto/métodos , Preescolar , Tuberculosis Latente/diagnóstico , Tuberculosis Latente/epidemiología , Tuberculosis Latente/diagnóstico por imagen , Lactante , Tuberculosis/epidemiología , Tuberculosis/diagnóstico , Tuberculosis/diagnóstico por imagen
13.
Sci Adv ; 10(14): eadk6911, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38579000

RESUMEN

Despite the importance of protein glycosylation to brain health, current knowledge of glycosylated proteoforms or glycoforms in human brain and their alterations in Alzheimer's disease (AD) is limited. Here, we report a proteome-wide glycoform profiling study of human AD and control brains using intact glycopeptide-based quantitative glycoproteomics coupled with systems biology. Our study identified more than 10,000 human brain N-glycoforms from nearly 1200 glycoproteins and uncovered disease signatures of altered glycoforms and glycan modifications, including reduced sialylation and N-glycan branching and elongation as well as elevated mannosylation and N-glycan truncation in AD. Network analyses revealed a higher-order organization of brain glycoproteome into networks of coregulated glycoforms and glycans and discovered glycoform and glycan modules associated with AD clinical phenotype, amyloid-ß accumulation, and tau pathology. Our findings provide valuable insights into disease pathogenesis and a rich resource of glycoform and glycan changes in AD and pave the way forward for developing glycosylation-based therapies and biomarkers for AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Glicoproteínas/metabolismo , Glicosilación , Polisacáridos/metabolismo , Encéfalo/metabolismo
14.
Tzu Chi Med J ; 36(1): 67-75, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38406566

RESUMEN

Objectives: Determining a diagnosis for non-Tuberculous mycobacterium (NTM)-lung disease (LD) remains difficult. The value of circulating cell-free DNA (cfDNA) secreted from microbes has been established in the detection of pathogens in septic patients. However, it is unknown whether NTM-derived cfDNA is detectable in plasma from patients with NTM-LD and whether this is associated with the disease status of NTM-LD, especially in patients with Mycobacterium avium complex (MAC)-LD. Materials and Methods: In this pilot study, from 2018 to 2019, we enrolled adult patients with MAC-LD at Taipei Veterans General Hospital in Taiwan for the detection of circulating cfDNA. We performed cfDNA extraction from plasma, next-generation sequencing (NGS) for nonhuman cfDNA, and sequence matching to a microbial database and then assessed the association between pathogen cfDNA and MAC-LD. Results: Two (40%) plasma samples from MAC-LD patients had detectable MAC-specific cfDNA, namely one instance of DNA polymerase III alpha subunit and one instance of ATP-binding cassette transporters permease. The plasma samples from the three other MAC-LD cases and the one tuberculosis control were negative for either NTM-derived cfDNA or tuberculosis-related cfDNA. In addition to MAC-specific cfDNA, Ralstonia solanacearum, Staphylococcus aureus, and Pasteurella multocida were the most observed bacteria in our patients. The two patients with MAC-cfDNA positivity yielded higher radiographic scores (P = 0.076) and presented a higher number of nonhuman reads than those without MAC-cfDNA positivity (P = 0.083). Conclusion: Using NGS method, we demonstrated MAC-cfDNA was detectable in patients with MAC-LD. Further large-scale research is warranted to assess the clinical value of detecting MAC-specific cfDNA in MAC-LD patients.

15.
Sensors (Basel) ; 24(4)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38400323

RESUMEN

In the era of continuous development in Internet of Things (IoT) technology, smart services are penetrating various facets of societal life, leading to a growing demand for interconnected devices. Many contemporary devices are no longer mere data producers but also consumers of data. As a result, massive amounts of data are transmitted to the cloud, but the latency generated in edge-to-cloud communication is unacceptable for many tasks. In response to this, this paper introduces a novel contribution-a layered computing network built on the principles of fog computing, accompanied by a newly devised algorithm designed to optimize user tasks and allocate computing resources within rechargeable networks. The proposed algorithm, a synergy of Lyapunov-based, dynamic Long Short-Term Memory (LSTM) networks, and Particle Swarm Optimization (PSO), allows for predictive task allocation. The fog servers dynamically train LSTM networks to effectively forecast the data features of user tasks, facilitating proper unload decisions based on task priorities. In response to the challenge of slower hardware upgrades in edge devices compared to user demands, the algorithm optimizes the utilization of low-power devices and addresses performance limitations. Additionally, this paper considers the unique characteristics of rechargeable networks, where computing nodes acquire energy through charging. Utilizing Lyapunov functions for dynamic resource control enables nodes with abundant resources to maximize their potential, significantly reducing energy consumption and enhancing overall performance. The simulation results demonstrate that our algorithm surpasses traditional methods in terms of energy efficiency and resource allocation optimization. Despite the limitations of prediction accuracy in Fog Servers (FS), the proposed results significantly promote overall performance. The proposed approach improves the efficiency and the user experience of Internet of Things systems in terms of latency and energy consumption.

16.
bioRxiv ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38260470

RESUMEN

Exchange protein directly activated by cAMP (EPAC1) mediates the intracellular functions of a critical stress-response second messenger, cAMP. Herein, we report that EPAC1 is a cellular substrate of protein SUMOylation, a prevalent stress-response posttranslational modification. Site-specific mapping of SUMOylation by mass spectrometer leads to identifying K561 as a primary SUMOylation site in EPAC1. Sequence and site-directed mutagenesis analyses reveal a functional SUMO-interacting motif required for cellular SUMOylation of EPAC1. SUMO modification of EPAC1 mediates its heat shock-induced Rap1/2 activation in a cAMP-independent manner. Structural modeling and molecular dynamics simulation studies demonstrate that SUMO substituent on K561 of EPAC1 promotes Rap1 interaction by increasing the buried surface area between the SUMOylated receptor and its effector. Our studies identify a functional SUMOylation site in EPAC1 and unveil a novel mechanism in which SUMOylation of EPAC1 leads to its autonomous activation. The findings of SUMOylation-mediated activation of EPAC1 not only provide new insights into our understanding of cellular regulation of EPAC1 but also will open up a new field of experimentation concerning the cross-talk between cAMP/EPAC1 signaling and protein SUMOylation, two major cellular stress response pathways, during cellular homeostasis.

17.
Cancer Lett ; 585: 216656, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38266804

RESUMEN

Hormone receptor-positive breast cancer (HR+ BC) is known to be relatively insensitive to chemotherapy, and since chemotherapy has remained the major neoadjuvant therapy for HR+ BC, the undetermined mechanism of chemoresistance and how chemotherapy reshapes the immune microenvironment need to be explored by high-throughput technology. By using single-cell RNA sequencing and multiplexed immunofluorescence staining analysis of HR+ BC samples (paired pre- and post-neoadjuvant chemotherapy (NAC)), the levels of previously unrecognized immune cell subsets, including CD8+ T cells with pronounced expression of T-cell development (LMNA) and cytotoxicity (FGFBP2) markers, CD4+ T cells characterized by proliferation marker (ATP1B3) expression and macrophages characterized by CD52 expression, were found to be increased post-NAC, which were predictive of chemosensitivity and their antitumor function was also validated with in vitro experiments. In terms of immune checkpoint expression of CD8+ T cells, we found their changes were inconsistent post-NAC, that LAG3, VSIR were decreased, and PDCD1, HAVCR2, CTLA4, KLRC1 and BTLA were increased. In addition, we have identified novel genomic and transcriptional patterns of chemoresistant cancer cells, both innate and acquired, and have confirmed their prognostic value with TCGA cohorts. By shedding light on the ecosystem of HR+ BC reshaped by chemotherapy, our results uncover valuable candidates for predicting chemosensitivity and overcoming chemoresistance in HR+ BC.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Terapia Neoadyuvante/métodos , Linfocitos T CD8-positivos/metabolismo , Ecosistema , Análisis de Secuencia de ARN , Microambiente Tumoral , ATPasa Intercambiadora de Sodio-Potasio/uso terapéutico
18.
J Hazard Mater ; 465: 133118, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38101017

RESUMEN

Cadmium (Cd) contamination in agricultural soil is a global concern for soil health and food sustainability because it can cause Cd accumulation in cereal grains. An in-situ stabilizing technology (using organic amendments) has been widely used for Cd remediation in arable lands. Therefore, the current study examined the influence of vermicompost (VC) on soil biochemical traits, bacterial community diversity and composition, Cd uptake and accumulation in rice plants and grain yield in a Cd-contaminated soil during the late growing season in 2022. Different doses of VC (i.e., V1 = 0 t ha-1, V2 = 3 t ha-1 and V3 = 6 t ha-1) and two concentrations of Cd (i.e., Cd1 = 0 and Cd2 = 50 mg Cd Kg-1 were used. We performed high-throughput sequencing of 16S ribosomal RNA gene amplicons to characterize soil bacterial communities. The addition of VC considerably affected the diversity and composition of the soil bacterial community; and increased the relative abundance of phyla Chloroflexi, Proteobacteria, Acidobacteriota, Plantomycetota, Gemmatimonadota, Patescibacteria and Firmicute. In addition, VC application, particularly High VC treatment, exhibited the highest bacterial diversity and richness (i.e., Simpson, Shannon, ACE, and Chao 1 indexes) of all treatments. Similarly, the VC application increased the soil chemical traits, including soil pH, soil organic carbon (SOC), available nitrogen (AN), total nitrogen (TN), total potassium (TK), total phosphorous (TP) and enzyme activities (i.e., acid phosphatase, catalase, urease and invertase) compared to non-VC treated soil under Cd stress. The average increase in SOC, TN, AN, TK and TP were 5.75%, 41.15%, 18.51%, 12.31%, 25.45% and 29.67%, respectively, in the High VC treatment (Pos-Cd + VC3) compared with Cd stressed soil. Redundancy analysis revealed that the leading bacterial phyla were associated with SOC, AN, TN, TP and pH, although the relative abundance of Firmicutes, Proteobacteria, Bacteroidata, and Acidobacteria on a phylum basis and Actinobacteria, Gammaproteobacteria and Myxococcia on a class basis, were highly correlated with soil environmental factors. Moreover, the VC application counteracted the adverse effects of Cd on plants and significantly reduced the Cd uptake and accumulation in rice organs, such as roots, stem + leaves and grain under Cd stress conditions. Similarly, applying VC significantly increased the fragrant rice grain yield and yield traits under Cd toxicity. The correlation analysis showed that the increased soil quantities traits were crucial in obtaining high rice grain yield. Generally, the findings of this research demonstrate that the application of VC in paddy fields could be useful for growers in Southern China by sustainably enhancing soil functionality and crop production.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/análisis , Suelo/química , Oryza/química , Carbono/análisis , Bacterias , Acidobacteria , Proteobacteria , Grano Comestible/química , Fósforo/análisis , Nitrógeno/análisis , China , Contaminantes del Suelo/análisis
19.
MedComm (2020) ; 4(6): e444, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38098611

RESUMEN

Liver transplantation (LT) stands as the gold standard for treating end-stage liver disease and hepatocellular carcinoma, yet postoperative complications continue to impact survival rates. The liver's unique immune system, governed by a microenvironment of diverse immune cells, is disrupted during processes like ischemia-reperfusion injury posttransplantation, leading to immune imbalance, inflammation, and subsequent complications. In the posttransplantation period, immune cells within the liver collaboratively foster a tolerant environment, crucial for immune tolerance and liver regeneration. While clinical trials exploring cell therapy for LT complications exist, a comprehensive summary is lacking. This review provides an insight into the intricacies of the liver's immune microenvironment, with a specific focus on macrophages and T cells as primary immune players. Delving into the immunological dynamics at different stages of LT, we explore the disruptions after LT and subsequent immune responses. Focusing on immune cell targeting for treating liver transplant complications, we provide a comprehensive summary of ongoing clinical trials in this domain, especially cell therapies. Furthermore, we offer innovative treatment strategies that leverage the opportunities and prospects identified in the therapeutic landscape. This review seeks to advance our understanding of LT immunology and steer the development of precise therapies for postoperative complications.

20.
Artículo en Inglés | MEDLINE | ID: mdl-37987599

RESUMEN

OBJECTIVE: This study aimed to assess the safety and efficacy of triple-dose intravenous tranexamic acid (TXA) in patients following total hip arthroplasty (THA) using thromboelastography (TEG). METHODS: One hundred thirty patients undergoing THA were prospectively enrolled in the study. According to the intravenous infusion TXA dose, patients were divided into single-dose (n=65; mean age=60.8 ± 8.1 years) and triple-dose groups (n=65; mean age=61.8 ± 8.6 years). Complete blood count (CBC), conventional coagulation tests (CCT), and TEG were conducted 1 day before the operation, on postoperative day 1 (POD1), and postoperative day 7 (POD7). Color Doppler ultrasonography was performed 1 day before the operation and on POD7. Drainage blood loss, total blood loss (TBL), hidden blood loss (HBL), deep vein thrombosis (DVT) incidence, and blood transfusion rates were calculated and recorded. The CCT, CBC, and TEG parameters were compared between the 2 groups. RESULTS: Single- and triple-dose groups had significantly different hematocrit on POD7 (P < .05). No significant differences were found in CCT and hemoglobin at any corresponding time point between the 2 groups (P > .05). Despite the reaction time (R) on POD1 (P < .05), there were no significant differences in other TEG parameters at any other time point between the 2 groups (P > 0.05). For drainage blood loss and TBL, the triple-dose group had lesser blood loss than the single-dose group (P < .05). However, no significant differences were found for blood transfusion rate, HBL, or incidence of DVT (P > .05). CONCLUSION: Compared with single-dose, triple-dose TXA can be more effective in decreasing blood loss without increasing DVT incidence in patients undergoing THA. Although there is a notable disparity in the R time on POD1, the administration of triple-dose TXA does not substantially impact the coagulation status as assessed by TEG and CCT.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA