Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Photochem Photobiol B ; 245: 112735, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37302156

RESUMEN

Excessive light exposure can potentially cause irreversible damage to the various photoreceptor cells, and this aspect has been considered as an important factor leading to the progression of the different retinal diseases. AMP-activated protein kinase (AMPK) and the mammalian target of rapamycin (mTOR) are crucial intracellular signaling hubs involved in the regulation of cellular metabolism, energy homeostasis, cellular growth and autophagy. A number of previous studies have indicated that either AMPK activation or mTOR inhibition can promote autophagy in most cases. In the current study, we have established an in vitro as well as in vivo photooxidation-damaged photoreceptor model and investigated the possible influence of visible light exposure in the AMPK/mTOR/autophagy signaling pathway. We have also explored the potential regulatory effects of AMPK/mTOR on light-induced autophagy and protection achieved by suppressing autophagy in photooxidation-damaged photoreceptors. We observed that light exposure led to a significant activation of mTOR and autophagy in the photoreceptor cells. However, intriguingly, AMPK activation or mTOR inhibition significantly inhibited rather than promoting autophagy, which was termed as AMPK-dependent inhibition of autophagy. In addition, either indirectly suppressing autophagy by AMPK activation/ mTOR inhibition or directly blocking autophagy with an inhibitor exerted a significant protective effect on the photoreceptor cells against the photooxidative damage. Neuroprotective effects caused by the AMPK-dependent inhibition of autophagy were also verified with a retinal light injured mouse model in vivo. Overall, our findings demonstrated that AMPK / mTOR pathway could inhibit autophagy through AMPK-dependent inhibition of autophagy to significantly protect the photoreceptors from photooxidative injury, which may aid to further develop novel targeted retinal neuroprotective drugs.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Fármacos Neuroprotectores , Ratones , Animales , Proteínas Quinasas Activadas por AMP/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Transducción de Señal , Células Fotorreceptoras/metabolismo , Fármacos Neuroprotectores/farmacología , Sirolimus/farmacología , Autofagia , Mamíferos/metabolismo
2.
Aging (Albany NY) ; 12(16): 16579-16596, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32858529

RESUMEN

Excessive light exposure is a principal environmental factor, which can cause damage to photoreceptors and retinal pigment epithelium (RPE) cells and may accelerate the progression of age-related macular degeneration (AMD). In this study, oxidative stress, endoplasmic reticulum (ER) stress and autophagy caused by light exposure were evaluated in vitro and in vivo. Light exposure caused severe photo-oxidative stress and ER stress in photoreceptors (661W cells) and RPE cells (ARPE-19 cells). Suppressing either oxidative stress or ER stress was protective against light damage in 661W and ARPE-19 cells and N-acetyl-L-cysteine treatment markedly inhibited the activation of ER stress caused by light exposure. Moreover, suppressing autophagy with 3-methyladenine significantly attenuated light-induced cell death. Additionally, inhibiting ER stress either by knocking down PERK signals or with GSK2606414 treatment remarkably suppressed prolonged autophagy and protected the cells against light injury. In vivo experiments verified neuroprotection via inhibiting ER stress-related autophagy in light-damaged retinas of mice. In conclusion, the above results suggest that light-induced photo-oxidative stress may trigger subsequent activation of ER stress and prolonged autophagy in photoreceptors and RPE cells. Suppressing ER stress may abrogate over-activated autophagy and protect the retina against light injury.


Asunto(s)
Autofagia/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Luz/efectos adversos , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Células Fotorreceptoras de Vertebrados/efectos de los fármacos , Epitelio Pigmentado de la Retina/efectos de los fármacos , Acetilcisteína/farmacología , Adenina/análogos & derivados , Adenina/farmacología , Animales , Antioxidantes/farmacología , Autofagia/efectos de la radiación , Línea Celular , Estrés del Retículo Endoplásmico/efectos de la radiación , Humanos , Indoles/farmacología , Masculino , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de la radiación , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patología , Células Fotorreceptoras de Vertebrados/efectos de la radiación , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Epitelio Pigmentado de la Retina/efectos de la radiación , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
3.
Cell Commun Signal ; 18(1): 27, 2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-32066462

RESUMEN

BACKGROUND: Excessive light exposure is a detrimental environmental factor that plays a critical role in the pathogenesis of retinal degeneration. However, the mechanism of light-induced death of retina/photoreceptor cells remains unclear. The mammalian/mechanistic target of rapamycin (mTOR) and Poly (ADP-ribose) polymerase-1 (PARP-1) have become the primary targets for treating many neurodegenerative disorders. The aim of this study was to elucidate the mechanisms underlying light-induced photoreceptor cell death and whether the neuroprotective effects of mTOR and PARP-1 inhibition against death are mediated through apoptosis-inducing factor (AIF). METHODS: Propidium iodide (PI)/Hoechst staining, lentiviral-mediated short hairpin RNA (shRNA), Western blot analysis, cellular fraction separation, plasmid transient transfection, laser confocal microscopy, a mice model, electroretinography (ERG), and hematoxylin-eosin (H & E) staining were employed to explore the mechanisms by which rapamycin/3-Aminobenzamide (3AB) exert neuroprotective effects of mTOR/PARP-1 inhibition in light-injured retinas. RESULTS: A parthanatos-like death mechanism was evaluated in light-injured 661 W cells that are an immortalized photoreceptor-like cell line that exhibit cellular and biochemical feature characteristics of cone photoreceptor cells. The death process featured over-activation of PARP-1 and AIF nuclear translocation. Either PARP-1 or AIF knockdown played a significantly protective role for light-damaged photoreceptors. More importantly, crosstalk was observed between mTOR and PARP-1 signaling and mTOR could have regulated parthanatos via the intermediate factor sirtuin 1 (SIRT1). The parthanatos-like injury was also verified in vivo, wherein either PARP-1 or mTOR inhibition provided significant neuroprotection against light-induced injury, which is evinced by both structural and functional retinal analysis. Overall, these results elucidate the mTOR-regulated parthanatos death mechanism in light-injured photoreceptors/retinas and may facilitate the development of novel neuroprotective therapies for retinal degeneration diseases. CONCLUSIONS: Our results demonstrate that inhibition of the mTOR/PARP-1 axis exerts protective effects on photoreceptors against visible-light-induced parthanatos. These protective effects are conducted by regulating the downstream factors of AIF, while mTOR possibly interacts with PARP-1 via SIRT1 to regulate parthanatos. Video Abstract Schematic diagram of mTOR interacting with PARP-1 to regulate visible light-induced parthanatos. Increased ROS caused by light exposure penetrates the nuclear membrane and causes nuclear DNA strand breaks. PARP-1 detects DNA breaks and synthesizes PAR polymers to initiate the DNA repair system that consumes a large amount of cellular NAD+. Over-production of PAR polymers prompts the release of AIF from the mitochondria and translocation to the nucleus, which leads to parthanatos. Activated mTOR may interact with PARP-1 via SIRT1 to regulate visible light-induced parthanatos.


Asunto(s)
Luz/efectos adversos , Parthanatos , Células Fotorreceptoras de Vertebrados , Poli(ADP-Ribosa) Polimerasa-1/fisiología , Serina-Treonina Quinasas TOR/fisiología , Animales , Factor Inductor de la Apoptosis/metabolismo , Línea Celular , Masculino , Ratones , Ratones Endogámicos BALB C , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patología
4.
Neural Plast ; 2019: 3017678, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30984254

RESUMEN

Limb spasms are phenomena of hyperreflexia that occur after spinal cord injury. Currently, the clinical treatment is less than ideal. Our goal is to develop a combination therapy based on individualized medicine to reduce spasticity after spinal cord injury. In this study, rats received a severe contusive injury at the T9 segment of the spinal cord, followed by gene therapy with adenoassociated virus encoding human neurotrophic factor 3 (AAV-NT3) and a 2-week exercise program starting at 4 weeks after injury. We quantified the frequency of spasms during a swimming test at 4 and 6 weeks after injury and confirmed the results of the swimming test by measuring the H-reflex of the plantar muscle. We obtained weekly hind limb exercise scores to assess the effect of the interventions in hind limb motor function improvement. Then, we used immunofluorescence to observe the immunoreactivity of spinal motor neurons, synaptophysin, cholinergic interneurons, and GABAergic interneurons. We also measured the expression of KCC2 in the spinal cord by western blot. We found that AAV-NT3 gene therapy, exercise, and combination therapy all attenuated the frequency of spasms in the swimming test conducted at 6 weeks after spinal cord injury and increased rate-dependent depression of H-reflex. Combination therapy was significantly superior to AAV-NT3 alone in protecting motor neurons. Recovery of KCC2 expression was significantly greater in rats treated with combination therapy than in the exercise group. Combination therapy was also significantly superior to individual therapies in remodeling spinal cord neurons. Our study shows that the combination of AAV-NT3 gene therapy and exercise can alleviate muscle spasm after spinal cord injury by altering the excitability of spinal interneurons and motor neurons. However, combination therapy did not show a significant additive effect, which needs to be improved by adjusting the combined strategy.


Asunto(s)
Terapia por Ejercicio/métodos , Terapia Genética/métodos , Espasticidad Muscular/terapia , Factores de Crecimiento Nervioso/genética , Traumatismos de la Médula Espinal/complicaciones , Adenoviridae/fisiología , Animales , Terapia Combinada , Femenino , Ganglios Espinales/metabolismo , Vectores Genéticos/administración & dosificación , Reflejo H , Inyecciones Intramusculares , Interneuronas/fisiología , Neuronas Motoras/fisiología , Espasticidad Muscular/etiología , Espasticidad Muscular/genética , Músculo Esquelético/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Neurotrofina 3 , Ratas Wistar
5.
Free Radic Biol Med ; 129: 569-581, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30342188

RESUMEN

Retinal degeneration is a major cause of severe vision loss and irreversible blindness and is characterized by progressive damage to retinal photoreceptor cells. Resveratrol (RSV) serves as an activator of the histone deacetylase, Sirt1, and has been shown to exert anti-oxidative properties. In this study, we mimicked retinal degeneration by subjecting photoreceptors (661 W cells) to glucose deprivation (GD) or light exposure. Under these conditions, we investigated the mechanisms underlying GD- or light exposure-induced cell death and the protective effect of RSV. We found that GD and light exposure resulted in mitochondrial dysfunction, oxidative stress, and cell death. Treatment of injured cells with RSV decreased the production of reactive oxygen species (ROS), improved the ratio of reduced/oxidized glutathione (GSH/GSSG), mitochondrial membrane potential and morphology, and reduced apoptosis. We used the caspase inhibitor, z-VAD-fmk, and a lentiviral-mediated shRNA knockdown of PARP-1 to reveal that GD and light exposure-induced cell death have different underlying mechanisms; GD triggered a caspase-dependent cell death pathway, whereas light exposure triggered a PARP-dependent cell death pathway. The level of caspase-9 and caspase-3, upregulated following GD, were reduced by treatment with RSV. Similarly, the level of PARP-1 and AIF, upregulated following light exposure, were decreased by treatment with RSV. Additionally, treatment with RSV elevated the protein expression and enzymatic activity of Sirt1 and a Sirt1 inhibitor reduced the protective effect of RSV against insult-induced cellular injuries, indicating that RSV's protective effect may involve Sirt1 activation. Finally, we investigated the neuroprotection of RSV in vivo. Administration of RSV to mice under extreme light exposure led to a suppression of the light-induced thinning of the outer nuclear layer (ONL) detected by hematoxylin and eosin (H&E) staining and restored retinal function evaluated by electroretinography (ERG). Taken together, our findings provide evidence that treatment with RSV has neuroprotective effects on both GD and light exposure-induced cell death pathways in photoreceptor cells.


Asunto(s)
Antioxidantes/farmacología , Poli(ADP-Ribosa) Polimerasa-1/genética , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Resveratrol/farmacología , Células Fotorreceptoras Retinianas Conos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Clorometilcetonas de Aminoácidos/farmacología , Animales , Factor Inductor de la Apoptosis/genética , Factor Inductor de la Apoptosis/metabolismo , Caspasa 3/genética , Caspasa 3/metabolismo , Caspasa 9/genética , Caspasa 9/metabolismo , Inhibidores de Caspasas/farmacología , Muerte Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Regulación de la Expresión Génica , Glucosa/deficiencia , Glucosa/farmacología , Glutatión/metabolismo , Luz/efectos adversos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Células Fotorreceptoras Retinianas Conos/citología , Células Fotorreceptoras Retinianas Conos/metabolismo , Transducción de Señal/genética , Sirtuina 1/genética , Sirtuina 1/metabolismo
6.
J Environ Pathol Toxicol Oncol ; 37(4): 305-316, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30806237

RESUMEN

Induced pluripotent stem cells (also called iPSCs) are somatic cells reprogrammed by overexpressing four nuclear transcriptional factors containing Sox2, Klf4, c-myc and Oct4 is the one of research hotspots. Its pluripotency, self-renewal capacity and wide accessibility to donor tissues have made possible the means for modified regenerative medicine. They are considered a possible basis of healthy tissue to cure diseases, like ophthalmic diseases, degenerative diseases, age-related macular degeneration (AMD), are primarily because of the weakening capability of photoreceptor cells, retinal ganglion cells (RGCs), retinal pigmented epithelium (RPE) or other retinal cells. And these retinal cells are unable to regenerate and currently there are no effective treatments to restore sight. iPSCs allow for the in vitro development of numerous varieties of retinal cells, and may treat these diseases by retinal transplantation. Although other stem cells could differentiate into retinal cells, iPSCs derived retinal cells might have numerous benefits as compared to other stem cell sources including embryonic stem (ES) cells. Mainly they would be directly obtained from the patient, therefore eradicating every probable chance of adverse immune responses. Second, making iPSCs just needs somatic cells, thus circumventing the valid ethical issues which limited the clinic use of ES cells derived from human. Third, iPSCs are parallel to ES cells in differentiation ability, they can be expanded in vitro and induced to differentiate into retinal cells, providing a renewable source for therapeutic applications and scientific researches. In this current review, we have concise latest progresses.


Asunto(s)
Células Madre Pluripotentes Inducidas/trasplante , Enfermedades de la Retina/terapia , Trasplante de Células Madre/métodos , Ingeniería de Tejidos/métodos , Animales , Humanos , Factor 4 Similar a Kruppel , Investigación Biomédica Traslacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA