Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Dairy Sci ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38851568

RESUMEN

This article summarizes the applications of biosensors and biomimetic sensors in the detection of residues in dairy products. Biosensors utilize biological molecules such as enzymes or antibodies to detect residual substances in dairy products, demonstrating high specificity and sensitivity. Biomimetic sensors, inspired by biosensors, use synthetic materials to mimic biological sensing mechanisms, enhancing stability and reproducibility. Both sensor types have achieved significant success in detecting pesticide residues, veterinary drugs, bacteria, and other contaminants in dairy products. The applications of biological and biomimetic sensors not only improve the efficiency of residue detection in dairy products but also have the potential to reduce the time and cost of traditional methods. Their specificity and high sensitivity make them powerful tools in the dairy industry, thus contributing to ensuring the quality and safety of dairy products and meeting the growing consumer demands for health and food safety.

2.
Food Chem X ; 15: 100424, 2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36211753

RESUMEN

Organophosphorus (OPPs) residues in dairy products are a potential threat to human health. To extract trace amounts of OPPs in dairy products, a graphitic carbon nitride (g-C3N4) was synthesized and combined with OPPs-based molecularly imprinted microspheres (MIM) to create a composite material (MIM/g-C3N4). Then, the MIM/g-C3N4 was used to prepare a solid phase extraction (SPE) cartridge to detect the OPPs in dairy products with UPLC method. The specific surface area of MIM/g-C3N4 was 172.208 m2/g, good thermal stability under 300℃, and could reuse up to 15 times. The four OPPs had good linear relationship within the range of 1-10000 ng/mL (r 2 > 0.999). The limits of detection were 0.7-2.6 ng/mL, and recoveries from blank dairy samples were 86.4 to 95.3 %. In this study, MIM combined with g-C3N4 was firstly utilized for the detection of OPPs in dairy products, which indicated it might be an ideal adsorbent for dairy products pretreatment.

3.
Front Vet Sci ; 9: 862006, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35498747

RESUMEN

As a metabolic disease, fatty liver hemorrhagic syndrome (FLHS) has become a serious concern in laying hens worldwide. Abrus cantoniensis Hance (AC) is a commonly used plant in traditional medicine for liver disease treatment. Nevertheless, the effect and mechanism of the decoction of AC (ACD) on FLHS remain unclear. In this study, ultra-high performance liquid chromatography analysis was used to identify the main phytochemicals in ACD. FLHS model of laying hens was induced by a high-energy low-protein (HELP) diet, and ACD (0.5, 1, 2 g ACD/hen per day) was given to the hens in drinking water at the same time for 48 days. Biochemical blood indicators and histopathological analysis of the liver were detected and observed to evaluate the therapeutic effect of ACD. Moreover, the effects of ACD on liver metabolomics and gut microbiota in laying hens with FLHS were investigated. The results showed that four phytochemicals, including abrine, hypaphorine, vicenin-2, and schaftoside, were identified in ACD. ACD treatment ameliorated biochemical blood indicators in laying hens with FLHS by decreasing aspartate aminotransferase, alanine aminotransferase, triglycerides, low-density lipoprotein cholesterol, and total cholesterol, and increasing high-density lipoprotein cholesterol. In addition, lipid accumulation in the liver and pathological damages were relieved in ACD treatment groups. Moreover, distinct changes in liver metabolic profile after ACD treatment were observed, 17 endogenous liver metabolites mainly associated with the metabolism of arachidonic acid, histidine, tyrosine, and tryptophan were reversed by ACD. Gut microbiota analysis revealed that ACD treatment significantly increased bacterial richness (Chao 1, P < 0.05; Ace, P < 0.01), and upregulated the relative abundance of Bacteroidetes and downregulated Proteobacteria, improving the negative effects caused by HELP diet in laying hens. Taken together, ACD had a protective effect on FLHS by regulating blood lipids, reducing liver lipid accumulation, and improving the dysbiosis of liver metabolomics and gut microbiota.

4.
J Dairy Sci ; 105(4): 3019-3031, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35086700

RESUMEN

As a food adapted to all kinds of people, milk has a high nutritional value. Because milk is a complex biological matrix, detecting illegal compounds is often difficult. As a common pesticide, organophosphorus (OP) residues caused by nonstandard use may be ignored, which is a threat to milk quality. In this study, using coumaphos as template molecule, the synthesized molecularly imprinted polymer (MIP) can specifically recognize 7 kinds of OP. Then, the MIP was used as an identification element to prepare a chemiluminescence sensor on a 96-well microplate for the determination of OP residues in milk samples. Due to the 4-(imidazol-1-yl)phenol-enhanced luminol-H2O2 system, the sensitivity of the system is very high; the detection limits of 7 OP including coumaphos, fenthion, chlorpyrifos, parathion, diazinon, fenchlorphos, and fenitrothion were 1 to 3 pg/mL, and the half maximal inhibitory concentrations were 1 to 20 ng/mL. The intraday recoveries of 7 OP were in the range of 86.1 to 86.5%, and the interday recoveries were in the range of 83.6 to 94.2%. Furthermore, the sensor can be reused up to 5 times. Therefore, the MIP-based chemiluminescence sensor can be used as a routine tool to detect OP residues in milk samples.


Asunto(s)
Impresión Molecular , Animales , Humanos , Peróxido de Hidrógeno/química , Luminiscencia , Leche , Impresión Molecular/veterinaria , Polímeros Impresos Molecularmente , Polímeros/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA