Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
2.
J Virol ; 98(7): e0070724, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38953655

RESUMEN

Human norovirus was discovered more than five decades ago and is a widespread cause of outbreaks of acute gastroenteritis. There are no approved vaccines or antivirals currently available. However, norovirus inhibitors, including capsid-specific monoclonal antibodies (Mabs) and nanobodies, have recently shown promising results. Several Mabs and nanobodies were found to inhibit norovirus replication using a human intestinal enteroid (HIE) culture system and/or could block norovirus attachment to histo-blood group antigen (HBGA) co-factors. In our pursuit to develop a single broad-spectrum norovirus therapeutic, we continued our analysis and development of a cross-reactive and HBGA interfering nanobody (NB26). To improve NB26 binding capacity and therapeutic potential, we conjugated NB26 onto a human IgG Fc domain (Fc-NB26). We confirmed that Fc-NB26 cross-reacts with genetically diverse GII genotype capsid protruding (P) domains (GII.8, GII.14, GII.17, GII.24, GII.26, and GII.NA1) using a direct enzyme-linked immunosorbent assay. Furthermore, X-ray crystallography structures of these P domains and structures of other GII genotypes reveal that the NB26 binding site is largely conserved, validating its broad reactivity. We showed that Fc-NB26 has ~100-fold higher affinity toward the norovirus P domain compared to native NB26. We also found that both NB26 and Fc-NB26 neutralize human norovirus replication in the HIE culture system. Furthermore, the mode of inhibition confirmed that like NB26, Fc-NB26 caused norovirus particle disassembly and aggregation. Overall, these new findings demonstrate that structural modifications to nanobodies can improve their therapeutic potential.IMPORTANCEDeveloping vaccines and antivirals against norovirus remains a challenge, mainly due to the constant genetic and antigenic evolution. Moreover, re-infection with genetically related and/or antigenic variants is not uncommon. We further developed our leading norovirus nanobody (NB26) that indirectly interfered with norovirus binding to HBGAs, by converting NB26 into a dimeric Fc-linked Nanobody (Fc-NB26). We found that Fc-NB26 had improved binding affinity and neutralization capacity compared with native NB26. Using X-ray crystallography, we showed this nanobody engaged highly conserved capsid residues among genetically diverse noroviruses. Development of such broadly reactive potent therapeutic nanobodies delivered as a slow-releasing prophylactic could be of exceptional value for norovirus outbreaks, especially for the prevention or treatment of severe acute gastroenteritis in high-risk groups such as the young, elderly, and immunocompromised.


Asunto(s)
Infecciones por Caliciviridae , Proteínas de la Cápside , Norovirus , Anticuerpos de Dominio Único , Norovirus/genética , Norovirus/efectos de los fármacos , Norovirus/inmunología , Humanos , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/farmacología , Anticuerpos de Dominio Único/química , Proteínas de la Cápside/inmunología , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Infecciones por Caliciviridae/inmunología , Infecciones por Caliciviridae/virología , Infecciones por Caliciviridae/terapia , Antivirales/farmacología , Fragmentos Fc de Inmunoglobulinas/inmunología , Fragmentos Fc de Inmunoglobulinas/química , Anticuerpos Antivirales/inmunología , Reacciones Cruzadas , Cápside/metabolismo , Cápside/inmunología , Antígenos de Grupos Sanguíneos/metabolismo , Replicación Viral/efectos de los fármacos , Gastroenteritis/virología , Inmunoglobulina G/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología
3.
Cell Rep Med ; 5(6): 101587, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38781964

RESUMEN

Epstein-Barr virus (EBV) is associated with infectious mononucleosis, cancer, and multiple sclerosis. A vaccine that prevents infection and/or EBV-associated morbidity is an unmet need. The viral gH/gL glycoprotein complex is essential for infectivity, making it an attractive vaccine target. Here, we evaluate the immunogenicity of a gH/gL nanoparticle vaccine adjuvanted with the Sigma Adjuvant System (SAS) or a saponin/monophosphoryl lipid A nanoparticle (SMNP) in rhesus macaques. Formulation with SMNP elicits higher titers of neutralizing antibodies and more vaccine-specific CD4+ T cells. All but one animal in the SMNP group were infected after oral challenge with the EBV ortholog rhesus lymphocryptovirus (rhLCV). Their immune plasma had a 10- to 100-fold lower reactivity against rhLCV gH/gL compared to EBV gH/gL. Anti-EBV neutralizing monoclonal antibodies showed reduced binding to rhLCV gH/gL, demonstrating that EBV gH/gL neutralizing epitopes are poorly conserved on rhLCV gH/gL. Prevention of rhLCV infection despite antigenic disparity supports clinical development of gH/gL nanoparticle vaccines against EBV.


Asunto(s)
Anticuerpos Neutralizantes , Herpesvirus Humano 4 , Lymphocryptovirus , Macaca mulatta , Nanopartículas , Vacunación , Animales , Nanopartículas/química , Herpesvirus Humano 4/inmunología , Lymphocryptovirus/inmunología , Vacunación/métodos , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Infecciones por Virus de Epstein-Barr/inmunología , Infecciones por Virus de Epstein-Barr/prevención & control , Infecciones por Virus de Epstein-Barr/virología , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/farmacología , Humanos , Infecciones por Herpesviridae/prevención & control , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/virología
4.
bioRxiv ; 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38328068

RESUMEN

Plasmodium falciparum pathology is driven by the accumulation of parasite-infected erythrocytes in microvessels. This process is mediated by the parasite's polymorphic erythrocyte membrane protein 1 (PfEMP1) adhesion proteins. A subset of PfEMP1 variants that bind human endothelial protein C receptor (EPCR) through their CIDRα1 domains is responsible for severe malaria pathogenesis. A longstanding question is whether individual antibodies can recognize the large repertoire of circulating PfEMP1 variants. Here, we describe two broadly reactive and binding-inhibitory human monoclonal antibodies against CIDRα1. The antibodies isolated from two different individuals exhibited a similar and consistent EPCR-binding inhibition of 34 CIDRα1 domains, representing five of the six subclasses of CIDRα1. Both antibodies inhibited EPCR binding of both recombinant full-length and native PfEMP1 proteins as well as parasite sequestration in bioengineered 3D brain microvessels under physiologically relevant flow conditions. Structural analyses of the two antibodies in complex with two different CIDRα1 antigen variants reveal similar binding mechanisms that depend on interactions with three highly conserved amino acid residues of the EPCR-binding site in CIDRα1. These broadly reactive antibodies likely represent a common mechanism of acquired immunity to severe malaria and offer novel insights for the design of a vaccine or treatment targeting severe malaria.

5.
Nat Commun ; 14(1): 2815, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37198165

RESUMEN

A primary objective in malaria vaccine design is the generation of high-quality antibody responses against the circumsporozoite protein of the malaria parasite, Plasmodium falciparum (PfCSP). To enable rational antigen design, we solved a cryo-EM structure of the highly potent anti-PfCSP antibody L9 in complex with recombinant PfCSP. We found that L9 Fab binds multivalently to the minor (NPNV) repeat domain, which is stabilized by a unique set of affinity-matured homotypic, antibody-antibody contacts. Molecular dynamics simulations revealed a critical role of the L9 light chain in integrity of the homotypic interface, which likely impacts PfCSP affinity and protective efficacy. These findings reveal the molecular mechanism of the unique NPNV selectivity of L9 and emphasize the importance of anti-homotypic affinity maturation in protective immunity against P. falciparum.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Humanos , Epítopos , Proteínas Protozoarias/química , Malaria/prevención & control , Malaria Falciparum/prevención & control , Plasmodium falciparum , Anticuerpos Antiprotozoarios
6.
Structure ; 31(4): 480-491.e4, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36931276

RESUMEN

Monoclonal antibody L9 recognizes the Plasmodium falciparum circumsporozoite protein (PfCSP) and is highly protective following controlled human malaria challenge. To gain insight into its function, we determined cryoelectron microscopy (cryo-EM) structures of L9 in complex with full-length PfCSP and assessed how this recognition influenced protection by wild-type and mutant L9s. Cryo-EM reconstructions at 3.6- and 3.7-Å resolution revealed L9 to recognize PfCSP as an atypical trimer. Each of the three L9s in the trimer directly recognized an Asn-Pro-Asn-Val (NPNV) tetrapeptide on PfCSP and interacted homotypically to facilitate L9-trimer assembly. We analyzed peptides containing different repeat tetrapeptides for binding to wild-type and mutant L9s to delineate epitope and homotypic components of L9 recognition; we found both components necessary for potent malaria protection. Last, we found the 27-residue stretch recognized by L9 to be highly conserved in P. falciparum isolates, suggesting the newly revealed complete L9 epitope to be an attractive vaccine target.


Asunto(s)
Antimaláricos , Vacunas contra la Malaria , Malaria , Humanos , Epítopos , Microscopía por Crioelectrón , Plasmodium falciparum , Anticuerpos Antiprotozoarios , Proteínas Protozoarias/genética , Proteínas Protozoarias/química
7.
J Virol ; 97(4): e0183322, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36971561

RESUMEN

Noroviruses are the leading cause of outbreaks of acute gastroenteritis. These viruses usually interact with histo-blood group antigens (HBGAs), which are considered essential cofactors for norovirus infection. This study structurally characterizes nanobodies developed against the clinically important GII.4 and GII.17 noroviruses with a focus on the identification of novel nanobodies that efficiently block the HBGA binding site. Using X-ray crystallography, we have characterized nine different nanobodies that bound to the top, side, or bottom of the P domain. The eight nanobodies that bound to the top or side of the P domain were mainly genotype specific, while one nanobody that bound to the bottom cross-reacted against several genotypes and showed HBGA blocking potential. The four nanobodies that bound to the top of the P domain also inhibited HBGA binding, and structural analysis revealed that these nanobodies interacted with several GII.4 and GII.17 P domain residues that commonly engaged HBGAs. Moreover, these nanobody complementarity-determining regions (CDRs) extended completely into the cofactor pockets and would likely impede HBGA engagement. The atomic level information for these nanobodies and their corresponding binding sites provide a valuable template for the discovery of additional "designer" nanobodies. These next-generation nanobodies would be designed to target other important genotypes and variants, while maintaining cofactor interference. Finally, our results clearly demonstrate for the first time that nanobodies directly targeting the HBGA binding site can function as potent norovirus inhibitors. IMPORTANCE Human noroviruses are highly contagious and a major problem in closed institutions, such as schools, hospitals, and cruise ships. Reducing norovirus infections is challenging on multiple levels and includes the frequent emergence of antigenic variants, which complicates designing effective, broadly reactive capsid therapeutics. We successfully developed and characterized four norovirus nanobodies that bound at the HBGA pockets. Compared with previously developed norovirus nanobodies that inhibited HBGA through disrupted particle stability, these four novel nanobodies directly inhibited HBGA engagement and interacted with HBGA binding residues. Importantly, these new nanobodies specifically target two genotypes that have caused the majority of outbreaks worldwide and consequently would have an enormous benefit if they could be further developed as norovirus therapeutics. To date, we have structurally characterized 16 different GII nanobody complexes, a number of which block HBGA binding. These structural data could be used to design multivalent nanobody constructs with improved inhibition properties.


Asunto(s)
Antígenos de Grupos Sanguíneos , Norovirus , Anticuerpos de Dominio Único , Antígenos de Grupos Sanguíneos/química , Antígenos de Grupos Sanguíneos/metabolismo , Norovirus/efectos de los fármacos , Norovirus/metabolismo , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/farmacología , Sitios de Unión/efectos de los fármacos , Reacciones Cruzadas , Termodinámica , Cristalografía por Rayos X , Dominios Proteicos , Unión Proteica , Modelos Moleculares
8.
Nat Commun ; 14(1): 798, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36781872

RESUMEN

Respiratory syncytial virus (RSV), human metapneumovirus (HMPV), and human parainfluenza virus types one (HPIV1) and three (HPIV3) can cause severe disease and death in immunocompromised patients, the elderly, and those with underlying lung disease. A protective monoclonal antibody exists for RSV, but clinical use is limited to high-risk infant populations. Hence, therapeutic options for these viruses in vulnerable patient populations are currently limited. Here, we present the discovery, in vitro characterization, and in vivo efficacy testing of two cross-neutralizing monoclonal antibodies, one targeting both HPIV3 and HPIV1 and the other targeting both RSV and HMPV. The 3 × 1 antibody is capable of targeting multiple parainfluenza viruses; the MxR antibody shares features with other previously reported monoclonal antibodies that are capable of neutralizing both RSV and HMPV. We obtained structures using cryo-electron microscopy of these antibodies in complex with their antigens at 3.62 Å resolution for 3 × 1 bound to HPIV3 and at 2.24 Å for MxR bound to RSV, providing a structural basis for in vitro binding and neutralization. Together, a cocktail of 3 × 1 and MxR could have clinical utility in providing broad protection against four of the respiratory viruses that cause significant morbidity and mortality in at-risk individuals.


Asunto(s)
Metapneumovirus , Infecciones por Paramyxoviridae , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Humanos , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Microscopía por Crioelectrón , Infecciones por Paramyxoviridae/prevención & control , Proteínas Virales de Fusión , Protección Cruzada
9.
Structure ; 31(1): 20-32.e5, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36513069

RESUMEN

Opioid-related fatal overdoses have reached epidemic proportions. Because existing treatments for opioid use disorders offer limited long-term protection, accelerating the development of newer approaches is critical. Monoclonal antibodies (mAbs) are an emerging treatment strategy that targets and sequesters selected opioids in the bloodstream, reducing drug distribution across the blood-brain barrier, thus preventing or reversing opioid toxicity. We previously identified a series of murine mAbs with high affinity and selectivity for oxycodone, morphine, fentanyl, and nicotine. To determine their binding mechanism, we used X-ray crystallography to solve the structures of mAbs bound to their respective targets, to 2.2 Å resolution or higher. Structural analysis showed a critical convergent hydrogen bonding mode that is dependent on a glutamic acid residue in the mAbs' heavy chain and a tertiary amine of the ligand. Characterizing drug-mAb complexes represents a significant step toward rational antibody engineering and future manufacturing activities to support clinical evaluation.


Asunto(s)
Analgésicos Opioides , Nicotina , Ratones , Animales , Analgésicos Opioides/uso terapéutico , Anticuerpos Monoclonales/química , Oxicodona/uso terapéutico , Morfina/uso terapéutico
10.
Cell Rep Med ; 3(6): 100658, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35705092

RESUMEN

Epstein-Barr virus (EBV) is a cancer-associated pathogen responsible for 165,000 deaths annually. EBV is also the etiological agent of infectious mononucleosis and is linked to multiple sclerosis and rheumatoid arthritis. Thus, an EBV vaccine would have a significant global health impact. EBV is orally transmitted and has tropism for epithelial and B cells. Therefore, a vaccine would need to prevent infection of both in the oral cavity. Passive transfer of monoclonal antibodies against the gH/gL glycoprotein complex prevent experimental EBV infection in humanized mice and rhesus macaques, suggesting that gH/gL is an attractive vaccine candidate. Here, we evaluate the immunogenicity of several gH/gL nanoparticle vaccines. All display superior immunogenicity relative to monomeric gH/gL. A nanoparticle displaying 60 copies of gH/gL elicits antibodies that protect against lethal EBV challenge in humanized mice, whereas antibodies elicited by monomeric gH/gL do not. These data motivate further development of gH/gL nanoparticle vaccines for EBV.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Nanopartículas , Vacunas , Animales , Herpesvirus Humano 4 , Inmunización , Macaca mulatta , Ratones
11.
J Exp Med ; 219(8)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35736810

RESUMEN

The monoclonal antibody CIS43 targets the Plasmodium falciparum circumsporozoite protein (PfCSP) and prevents malaria infection in humans for up to 9 mo following a single intravenous administration. To enhance the potency and clinical utility of CIS43, we used iterative site-saturation mutagenesis and DNA shuffling to screen precise gene-variant yeast display libraries for improved PfCSP antigen recognition. We identified several mutations that improved recognition, predominately in framework regions, and combined these to produce a panel of antibody variants. The most improved antibody, CIS43_Var10, had three mutations and showed approximately sixfold enhanced protective potency in vivo compared to CIS43. Co-crystal and cryo-electron microscopy structures of CIS43_Var10 with the peptide epitope or with PfCSP, respectively, revealed functional roles for each of these mutations. The unbiased site-directed mutagenesis and screening pipeline described here represent a powerful approach to enhance protective potency and to enable broader clinical use of antimalarial antibodies.


Asunto(s)
Antimaláricos , Vacunas contra la Malaria , Anticuerpos Antiprotozoarios , Antimaláricos/farmacología , Microscopía por Crioelectrón , Humanos , Plasmodium falciparum , Proteínas Protozoarias , Saccharomyces cerevisiae/genética
12.
Sci Adv ; 8(18): eabm3948, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35507661

RESUMEN

Broadly HIV-1-neutralizing VRC01-class antibodies bind the CD4-binding site of Env and contain VH1-2*02-derived heavy chains paired with light chains expressing five-amino acid-long CDRL3s. Their unmutated germline forms do not recognize HIV-1 Env, and their lack of elicitation in human clinical trials could be due to the absence of activation of the corresponding naïve B cells by the vaccine immunogens. To address this point, we examined Env-specific B cell receptor sequences from participants in the HVTN 100 clinical trial. Of all the sequences analyzed, only one displayed homology to VRC01-class antibodies, but the corresponding antibody (FH1) recognized the C1C2 gp120 domain. For FH1 to switch epitope recognition to the CD4-binding site, alterations in the CDRH3 and CDRL3 were necessary. Only germ line-targeting Env immunogens efficiently activated VRC01 B cells, even in the presence of FH1 B cells. Our findings support the use of these immunogens to activate VRC01 B cells in humans.


Asunto(s)
VIH-1 , Vacunas , Anticuerpos Neutralizantes , Anticuerpos ampliamente neutralizantes , Anticuerpos Anti-VIH/química , Humanos , Homología de Secuencia
13.
Commun Biol ; 5(1): 342, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35411021

RESUMEN

Three betacoronaviruses have crossed the species barrier and established human-to-human transmission causing significant morbidity and mortality in the past 20 years. The most current and widespread of these is SARS-CoV-2. The identification of CoVs with zoonotic potential in animal reservoirs suggests that additional outbreaks could occur. Monoclonal antibodies targeting conserved neutralizing epitopes on diverse CoVs can form the basis for prophylaxis and therapeutic treatments and enable the design of vaccines aimed at providing pan-CoV protection. We previously identified a neutralizing monoclonal antibody, CV3-25 that binds to the SARS-CoV-2 spike, neutralizes the SARS-CoV-2 Beta variant comparably to the ancestral Wuhan Hu-1 strain, cross neutralizes SARS-CoV-1 and binds to recombinant proteins derived from the spike-ectodomains of HCoV-OC43 and HCoV-HKU1. Here, we show that the neutralizing activity of CV3-25 is maintained against the Alpha, Delta, Gamma and Omicron variants of concern as well as a SARS-CoV-like bat coronavirus with zoonotic potential by binding to a conserved linear peptide in the stem-helix region. Negative stain electron microscopy and a 1.74 Å crystal structure of a CV3-25/peptide complex demonstrates that CV3-25 binds to the base of the stem helix at the HR2 boundary to an epitope that is distinct from other stem-helix directed neutralizing mAbs.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Epítopos , Glicoproteína de la Espiga del Coronavirus/química
14.
Cell Rep ; 38(7): 110367, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35172158

RESUMEN

L9 is a potent human monoclonal antibody (mAb) that preferentially binds two adjacent NVDP minor repeats and cross-reacts with NANP major repeats of the Plasmodium falciparum circumsporozoite protein (PfCSP) on malaria-infective sporozoites. Understanding this mAb's ontogeny and mechanisms of binding PfCSP will facilitate vaccine development. Here, we isolate mAbs clonally related to L9 and show that this B cell lineage has baseline NVDP affinity and evolves to acquire NANP reactivity. Pairing the L9 kappa light chain (L9κ) with clonally related heavy chains results in chimeric mAbs that cross-link two NVDPs, cross-react with NANP, and more potently neutralize sporozoites in vivo compared with their original light chain. Structural analyses reveal that the chimeric mAbs bound minor repeats in a type-1 ß-turn seen in other repeat-specific antibodies. These data highlight the importance of L9κ in binding NVDP on PfCSP to neutralize sporozoites and suggest that PfCSP-based immunogens might be improved by presenting ≥2 NVDPs.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Cadenas Ligeras de Inmunoglobulina/metabolismo , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Proteínas Protozoarias/metabolismo , Secuencias Repetitivas de Aminoácido , Adolescente , Adulto , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/aislamiento & purificación , Linaje de la Célula , Culicidae/parasitología , Femenino , Humanos , Fragmentos Fab de Inmunoglobulinas/metabolismo , Ratones Endogámicos C57BL , Persona de Mediana Edad , Modelos Moleculares , Pruebas de Neutralización , Péptidos/química , Péptidos/metabolismo , Plasmodium falciparum/inmunología , Unión Proteica , Adulto Joven
15.
Immunity ; 54(12): 2859-2876.e7, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34788599

RESUMEN

Repeat antigens, such as the Plasmodium falciparum circumsporozoite protein (PfCSP), use both sequence degeneracy and structural diversity to evade the immune response. A few PfCSP-directed antibodies have been identified that are effective at preventing malaria infection, including CIS43, but how these repeat-targeting antibodies might be improved has been unclear. Here, we engineered a humanized mouse model in which B cells expressed inferred human germline CIS43 (iGL-CIS43) B cell receptors and used both vaccination and bioinformatic analysis to obtain variant CIS43 antibodies with improved protective capacity. One such antibody, iGL-CIS43.D3, was significantly more potent than the current best-in-class PfCSP-directed antibody. We found that vaccination with a junctional epitope peptide was more effective than full-length PfCSP at recruiting iGL-CIS43 B cells to germinal centers. Structure-function analysis revealed multiple somatic hypermutations that combinatorically improved protection. This mouse model can thus be used to understand vaccine immunogens and to develop highly potent anti-malarial antibodies.


Asunto(s)
Subgrupos de Linfocitos B/inmunología , Epítopos/inmunología , Vacunas contra la Malaria/inmunología , Malaria/inmunología , Plasmodium falciparum/fisiología , Proteínas Protozoarias/inmunología , Vacunas de ADN/inmunología , Traslado Adoptivo , Animales , Anticuerpos Antiprotozoarios/metabolismo , Modelos Animales de Enfermedad , Epítopos/genética , Ingeniería Genética , Humanos , Evasión Inmune , Inmunogenicidad Vacunal , Ratones , Ratones SCID , Proteínas Protozoarias/genética , Relación Estructura-Actividad , Vacunación
16.
PLoS Pathog ; 17(9): e1009543, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34559844

RESUMEN

Understanding the molecular mechanisms by which antibodies target and neutralize the HIV-1 envelope glycoprotein (Env) is critical in guiding immunogen design and vaccine development aimed at eliciting cross-reactive neutralizing antibodies (NAbs). Here, we analyzed monoclonal antibodies (mAbs) isolated from non-human primates (NHPs) immunized with variants of a native flexibly linked (NFL) HIV-1 Env stabilized trimer derived from the tier 2 clade C 16055 strain. The antibodies displayed neutralizing activity against the autologous virus with potencies ranging from 0.005 to 3.68 µg/ml (IC50). Structural characterization using negative-stain EM and X-ray crystallography identified the variable region 2 (V2) of the 16055 NFL trimer to be the common epitope for these antibodies. The crystal structures revealed that the V2 segment adopts a ß-hairpin motif identical to that observed in the 16055 NFL crystal structure. These results depict how vaccine-induced antibodies derived from different clonal lineages penetrate through the glycan shield to recognize a hypervariable region within V2 (residues 184-186) that is unique to the 16055 strain. They also provide potential explanations for the potent autologous neutralization of these antibodies, confirming the immunodominance of this site and revealing that multiple angles of approach are permissible for affinity/avidity that results in potent neutralizing capacity. The structural analysis reveals that the most negatively charged paratope correlated with the potency of the mAbs. The atomic level information is of interest to both define the means of autologous neutralization elicited by different tier 2-based immunogens and facilitate trimer redesign to better target more conserved regions of V2 to potentially elicit cross-neutralizing HIV-1 antibodies.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Epítopos Inmunodominantes/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Animales , Anticuerpos Monoclonales , Epítopos de Linfocito B/inmunología , Femenino , Infecciones por VIH/inmunología , VIH-1/inmunología , Macaca mulatta
17.
Cell Rep ; 36(2): 109353, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34237283

RESUMEN

SARS-CoV-2 is one of three coronaviruses that have crossed the animal-to-human barrier and caused widespread disease in the past two decades. The development of a universal human coronavirus vaccine could prevent future pandemics. We characterize 198 antibodies isolated from four COVID-19+ subjects and identify 14 SARS-CoV-2 neutralizing antibodies. One targets the N-terminal domain (NTD), one recognizes an epitope in S2, and 11 bind the receptor-binding domain (RBD). Three anti-RBD neutralizing antibodies cross-neutralize SARS-CoV-1 by effectively blocking binding of both the SARS-CoV-1 and SARS-CoV-2 RBDs to the ACE2 receptor. Using the K18-hACE transgenic mouse model, we demonstrate that the neutralization potency and antibody epitope specificity regulates the in vivo protective potential of anti-SARS-CoV-2 antibodies. All four cross-neutralizing antibodies neutralize the B.1.351 mutant strain. Thus, our study reveals that epitopes in S2 can serve as blueprints for the design of immunogens capable of eliciting cross-neutralizing coronavirus antibodies.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Glicoproteína de la Espiga del Coronavirus/inmunología , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/inmunología , Animales , Anticuerpos Antivirales/química , Anticuerpos Antivirales/inmunología , Sitios de Unión , Línea Celular , Reacciones Cruzadas , Epítopos/inmunología , Femenino , Células HEK293 , Humanos , Ratones , Pruebas de Neutralización , Unión Proteica/inmunología , Dominios Proteicos , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/química
19.
Cell Rep ; 35(5): 109084, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33951425

RESUMEN

An effective HIV-1 vaccine will likely need to elicit broadly neutralizing antibodies (bNAbs). Broad and potent VRC01-class bNAbs have been isolated from multiple infected individuals, suggesting that they could be reproducibly elicited by vaccination. Several HIV-1 envelope-derived germline-targeting immunogens have been designed to engage naive VRC01-class precursor B cells. However, they also present off-target epitopes that could hinder development of VRC01-class bNAbs. We characterize a panel of anti-idiotypic monoclonal antibodies (ai-mAbs) raised against inferred-germline (iGL) VRC01-class antibodies. By leveraging binding, structural, and B cell sorting data, we engineered a bispecific molecule derived from two ai-mAbs; one specific for VRC01-class heavy chains and one specific for VRC01-class light chains. The bispecific molecule preferentially activates iGL-VRC01 B cells in vitro and induces specific antibody responses in a murine adoptive transfer model with a diverse polyclonal B cell repertoire. This molecule represents an alternative non-envelope-derived germline-targeting immunogen that can selectively activate VRC01-class precursors in vivo.


Asunto(s)
Vacunas contra el SIDA/inmunología , Células Germinativas/metabolismo , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , Animales , Humanos , Ratones
20.
MAbs ; 13(1): 1912884, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33876699

RESUMEN

Human parainfluenza virus type III (HPIV3) is a common respiratory pathogen that afflicts children and can be fatal in vulnerable populations, including the immunocompromised. There are currently no effective vaccines or therapeutics available, resulting in tens of thousands of hospitalizations per year. In an effort to discover a protective antibody against HPIV3, we screened the B cell repertoires from peripheral blood, tonsils, and spleen from healthy children and adults. These analyses yielded five monoclonal antibodies that potently neutralized HPIV3 in vitro. These HPIV3-neutralizing antibodies targeted two non-overlapping epitopes of the HPIV3 F protein, with most targeting the apex. Prophylactic administration of one of these antibodies, PI3-E12, resulted in potent protection against HPIV3 infection in cotton rats. Additionally, PI3-E12 could also be used therapeutically to suppress HPIV3 in immunocompromised animals. These results demonstrate the potential clinical utility of PI3-E12 for the prevention or treatment of HPIV3 in both immunocompetent and immunocompromised individuals.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Anticuerpos Neutralizantes/farmacología , Antivirales/farmacología , Pulmón/virología , Virus de la Parainfluenza 3 Humana/efectos de los fármacos , Infecciones por Respirovirus/prevención & control , Proteínas Virales de Fusión/antagonistas & inhibidores , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Especificidad de Anticuerpos , Antivirales/inmunología , Linfocitos B/inmunología , Linfocitos B/virología , Línea Celular , Modelos Animales de Enfermedad , Epítopos , Interacciones Huésped-Patógeno , Humanos , Huésped Inmunocomprometido , Pulmón/inmunología , Virus de la Parainfluenza 3 Humana/inmunología , Virus de la Parainfluenza 3 Humana/patogenicidad , Infecciones por Respirovirus/inmunología , Infecciones por Respirovirus/virología , Sigmodontinae , Proteínas Virales de Fusión/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA