Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell Rep ; 42(5): 112372, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37086404

RESUMEN

Autophagy is a homeostatic process critical for cellular survival, and its malfunction is implicated in human diseases including neurodegeneration. Loss of autophagy contributes to cytotoxicity and tissue degeneration, but the mechanistic understanding of this phenomenon remains elusive. Here, we generated autophagy-deficient (ATG5-/-) human embryonic stem cells (hESCs), from which we established a human neuronal platform to investigate how loss of autophagy affects neuronal survival. ATG5-/- neurons exhibit basal cytotoxicity accompanied by metabolic defects. Depletion of nicotinamide adenine dinucleotide (NAD) due to hyperactivation of NAD-consuming enzymes is found to trigger cell death via mitochondrial depolarization in ATG5-/- neurons. Boosting intracellular NAD levels improves cell viability by restoring mitochondrial bioenergetics and proteostasis in ATG5-/- neurons. Our findings elucidate a mechanistic link between autophagy deficiency and neuronal cell death that can be targeted for therapeutic interventions in neurodegenerative and lysosomal storage diseases associated with autophagic defect.


Asunto(s)
NAD , Mononucleótido de Nicotinamida , Humanos , NAD/metabolismo , Mononucleótido de Nicotinamida/metabolismo , Neuronas/metabolismo , Mitocondrias/metabolismo , Autofagia , Niacinamida/metabolismo
2.
Cancer Metab ; 9(1): 4, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33478587

RESUMEN

BACKGROUND: Many cancers silence the metabolic enzyme argininosuccinate synthetase 1 (ASS1), the rate-limiting enzyme for arginine biosynthesis within the urea cycle. Consequently, ASS1-negative cells are susceptible to depletion of extracellular arginine by PEGylated arginine deiminase (ADI-PEG20), an agent currently being developed in clinical trials. As the primary mechanism of resistance to arginine depletion is re-expression of ASS1, we sought a tool to understand the temporal emergence of the resistance phenotype at the single-cell level. METHODS: A real-time, single-cell florescence biosensor was developed to monitor arginine-dependent protein translation. The versatile, protein-based sensor provides temporal information about the metabolic adaptation of cells, as it is able to quantify and track individual cells over time. RESULTS: Every ASS1-deficient cell analyzed was found to respond to arginine deprivation by decreased expression of the sensor, indicating an absence of resistance in the naïve cell population. However, the temporal recovery and emergence of resistance varied widely amongst cells, suggesting a heterogeneous metabolic response. The sensor also enabled determination of a minimal arginine concentration required for its optimal translation. CONCLUSIONS: The translation-dependent sensor developed here is able to accurately track the development of resistance in ASS1-deficient cells treated with ADI-PEG20. Its ability to track single cells over time allowed the determination that resistance is not present in the naïve population, as well as elucidating the heterogeneity of the timing and extent of resistance. This tool represents a useful advance in the study of arginine deprivation, while its design has potential to be adapted to other amino acids.

3.
Pharmacol Res ; 144: 8-18, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30951812

RESUMEN

Plant lectins are non-immunoglobin in nature and bind to the carbohydrate moiety of the glycoconjugates without altering any of the recognized glycosyl ligands. Plant lectins have found applications as cancer biomarkers for recognizing the malignant tumor cells for the diagnosis and prognosis of cancer. Interestingly, plant lectins contribute to inducing cell death through autophagy and apoptosis, indicating their potential implication in cancer inhibitory mechanism. In the present review, anticancer activities of major plant lectins have been documented, with a detailed focus on the signaling circuit for the possible molecular targeted cancer therapy. In this context, several lectins have exhibited preclinical and clinical significance, driving toward therapeutic potential in cancer treatment. Moreover, several plant lectins induce immunomodulatory activities, and therefore, novel strategies have been established from preclinical and clinical investigations for the development of combinatorial treatment consisting of immunotherapy along with other anticancer therapies. Although the application of plant lectins in cancer is still in very preliminary stage, advanced high-throughput technology could pave the way for the development of lectin-based complimentary medicine for cancer treatment.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Lectinas de Plantas/uso terapéutico , Animales , Antineoplásicos Fitogénicos/farmacología , Humanos , Factores Inmunológicos/farmacología , Factores Inmunológicos/uso terapéutico , Neoplasias/inmunología , Neoplasias/patología , Lectinas de Plantas/farmacología
4.
Methods Mol Biol ; 1854: 209-222, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29855817

RESUMEN

Macroautophagy (autophagy) is a conserved lysosomal-based intracellular degradation pathway. Here, we present different methods used for monitoring autophagy at cellular level. The methods involve Atg8/LC3 detection and quantification by Western blot, autophagic flux measurement through Western blot, direct fluorescence microscopy or indirect immunofluorescence, and finally traffic light assay using tf-LC3-II. Monitoring autophagic flux is experimentally challenging but obviously a prerequisite for the proper investigation of the process. These methods are suitable for screening purposes and can be used for measurements in cell lysates as well as in living cells. These assays have proven useful for the identification of genes and small molecules that regulate autophagy in mammalian cells.


Asunto(s)
Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Autofagia , Proteínas Asociadas a Microtúbulos/metabolismo , Western Blotting , Células HeLa , Humanos , Lisosomas/metabolismo , Microscopía Fluorescente
5.
Mol Carcinog ; 57(5): 664-677, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29457276

RESUMEN

Eradicating cancer stem cells (CSCs) in colorectal cancer (CRC) through differentiation therapy is a promising approach for cancer treatment. Our retrospective tumor-specimen analysis elucidated alteration in the expression of bone morphogenetic protein 2 (BMP-2) and ß-catenin during the colon cancer progression, indicating that their possible intervention through "forced differentiation" in colon cancer remission. We reveal that Abrus agglutinin (AGG) induces the colon CSCs differentiation, and enhances sensitivity to the anticancer therapeutics. The low dose AGG (max. dose = 100 ng/mL) decreased the expression of stemness-associated molecules such as CD44 and ß-catenin in the HT-29 cell derived colonospheres. Further, AGG augmented colonosphere differentiation, as demonstrated by the enhanced CK20/CK7 expression ratio and induced alkaline phosphatase activity. Interestingly, the AGG-induced expression of BMP-2 and the AGG-induced differentiation were demonstrated to be critically dependent on BMP-2 in the colonospheres. Similarly, autophagy-induction by AGG was associated with colonosphere differentiation and the gene silencing of BMP-2 led to the reduced accumulation of LC3-II, suggesting that AGG-induced autophagy is dependent on BMP-2. Furthermore, hVps34 binds strongly to BMP-2, indicating a possible association of BMP-2 with the process of autophagy. Moreover, the reduction in the self-renewal capacity of the colonospheres was associated with AGG-augmented autophagic degradation of ß-catenin through an interaction with the autophagy adaptor protein p62. In the subcutaneous HT-29 xenograft model, AGG profoundly inhibited the growth of tumors through an increase in BMP-2 expression and LC3-II puncta, and a decrease in ß-catenin expression, confirming the antitumor potential of AGG through induction of differentiation in colorectal cancer.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Células Madre Neoplásicas/citología , Lectinas de Plantas/farmacología , beta Catenina/química , Animales , Autofagia , Proteína Morfogenética Ósea 2/genética , Diferenciación Celular , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HT29 , Humanos , Ratones , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Proteolisis , Ensayos Antitumor por Modelo de Xenoinjerto , beta Catenina/metabolismo
6.
Mol Carcinog ; 56(11): 2400-2413, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28543759

RESUMEN

Oral cancer, a type of head and neck cancer, is ranked as one of the top most malignancies in India. Herein, we evaluated the anticancer efficacy of Abrus agglutinin (AGG), a plant lectin, in oral squamous cell carcinoma. AGG selectively inhibited cell growth, and caused cell cycle arrest and mitochondrial apoptosis through a reactive oxygen species (ROS)-mediated ATM-p73 dependent pathway in FaDu cells. AGG-induced ROS accumulation was identified as the major mechanism regulating apoptosis, DNA damage and DNA-damage response, which were significantly reversed by ROS scavenger N-acetylcysteine (NAC). Moreover, AGG was found to interact with mitochondrial manganese-dependent superoxide dismutase that might inhibit its activity and increase ROS in FaDu cells. In oral cancer p53 is mutated, thus we focused on p73; AGG resulted in p73 upregulation and knock down of p73 caused a decrease in AGG-induced apoptosis. Interestingly, AGG-dependent p73 expression was found to be regulated by ROS, which was reversed by NAC treatment. A reduction in the level of p73 in AGG-treated shATM cells was found to be associated with a decreased apoptosis. Moreover, administration of AGG (50 µg/kg body weight) significantly inhibited the growth of FaDu xenografts in athymic nude mice. In immunohistochemical analysis, the xenografts from AGG-treated mice displayed a decrease in PCNA expression and an increase in caspase-3 activation as compared to the controls. In conclusion, we established a connection among ROS, ATM and p73 in AGG-induced apoptosis, which might be useful in enhancing the therapeutic targeting of p53 deficient oral squamous cell carcinoma.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Carcinoma de Células Escamosas/tratamiento farmacológico , Daño del ADN/efectos de los fármacos , Neoplasias de la Boca/tratamiento farmacológico , Lectinas de Plantas/uso terapéutico , Proteína Tumoral p73/metabolismo , Abrus/química , Animales , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Ratones , Ratones Desnudos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Modelos Moleculares , Boca/efectos de los fármacos , Boca/metabolismo , Boca/patología , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Lectinas de Plantas/química , Lectinas de Plantas/farmacología , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA