RESUMEN
Hydrocephalus can affect brain function and motor ability. Current treatments mostly involve invasive surgeries, with a high risk of postoperative infections and failure. A successful animal model plays a significant role in developing new treatments for hydrocephalus. Hydrocephalus was induced in Sprague-Dawley rats by injecting 25% kaolin into the subarachnoid space at the cerebral convexities with different volumes of 30, 60 and 90 µL. Magnetic resonance imaging (MRI) was performed 1 month and 4 months after kaolin injection. The behavioral performance was assessed weekly, lasting for 7 weeks. The histopathological analyses were conducted to the lateral ventricles by hematoxylin-eosin (HE) staining. Transcriptomic analysis was used between Normal Pressure Hydrocephalus (NPH) patients and hydrocephalus rats. MRI showed a progressive enlargement of ventricles in hydrocephalus group. Kaolin-60 µL and kaolin-90 µL groups showed larger ventricular size, higher anxiety level, bigger decline in body weight, motor ability and cognitive competence. These symptoms may be due to higher-grade inflammatory infiltrate and the damage of the structure of ependymal layer of the ventricles, indicated by HE staining. The overlap upregulated genes and pathways mainly involve immunity and inflammation. Transcriptomic revealed shared pathogenic genes CD40, CD44, CXCL10, and ICAM1 playing a dominance role. 60 µL injection might be recommended for the establishment of hydrocephalus animal model, with a high successful rate and high stability. The hydrocephalus model was able to resemble the inflammatory mechanism and behavioral performance observed in human NPH patients, providing insights for identifying therapeutic targets for hydrocephalus.
RESUMEN
INTRODUCTION: Melanogenesis, the process responsible for melanin production, is a critical determinant of skin pigmentation. Dysregulation of this process can lead to hyperpigmentation disorders. METHOD: In this study, we identified a novel Reed Rhizome extract, (1'S, 2'S)-syringyl glycerol 3'-O-ß-D-glucopyranoside (compound 5), and evaluated its anti-melanogenic potential in zebrafish models and in vitro assays. Compound 5 inhibited melanin synthesis by 36.66% ± 14.00% and tyrosinase in vivo by 48.26% ± 6.94%, surpassing the inhibitory effects of arbutin. Network pharmacological analysis revealed key targets, including HSP90AA1, HRAS, and PIK3R1, potentially involved in the anti-melanogenic effects of compound 5. RESULTS: Molecular docking studies supported the interactions between compound 5 and these targets. Further, gene expression analysis in zebrafish indicated that compound 5 up-regulates hsp90aa1.1, hrasa, and pik3r1, and subsequently down-regulating mitfa, tyr, and tyrp1, critical genes in melanogenesis. CONCLUSION: These findings suggest that compound 5 inhibits melanin production via PI3K-Akt and Ras-Raf-MEK-ERK signaling pathways, positioning it as a promising candidate for the treatment of hyperpigmentation.
RESUMEN
The global prevalence rate for congenital hydrocephalus (CH) is approximately one out of every five hundred births with multifaceted predisposing factors at play. Genetic influences stand as a major contributor to CH pathogenesis, and epidemiological evidence suggests their involvement in up to 40% of all cases observed globally. Knowledge about an individual's genetic susceptibility can significantly improve prognostic precision while aiding clinical decision-making processes. However, the precise genetic etiology has only been pinpointed in fewer than 5% of human instances. More occurrences of CH cases are required for comprehensive gene sequencing aimed at uncovering additional potential genetic loci. A deeper comprehension of its underlying genetics may offer invaluable insights into the molecular and cellular basis of this brain disorder. This review provides a summary of pertinent genes identified through gene sequencing technologies in humans, in addition to the 4 genes currently associated with CH (two X-linked genes L1CAM and AP1S2, two autosomal recessive MPDZ and CCDC88C). Others predominantly participate in aqueduct abnormalities, ciliary movement, and nervous system development. The prospective CH-related genes revealed through animal model gene-editing techniques are further outlined, focusing mainly on 4 pathways, namely cilia synthesis and movement, ion channels and transportation, Reissner's fiber (RF) synthesis, cell apoptosis, and neurogenesis. Notably, the proper functioning of motile cilia provides significant impulsion for cerebrospinal fluid (CSF) circulation within the brain ventricles while mutations in cilia-related genes constitute a primary cause underlying this condition. So far, only a limited number of CH-associated genes have been identified in humans. The integration of genotype and phenotype for disease diagnosis represents a new trend in the medical field. Animal models provide insights into the pathogenesis of CH and contribute to our understanding of its association with related complications, such as renal cysts, scoliosis, and cardiomyopathy, as these genes may also play a role in the development of these diseases. Genes discovered in animals present potential targets for new treatments but require further validation through future human studies.
Asunto(s)
Hidrocefalia , Humanos , Hidrocefalia/genética , Hidrocefalia/etiología , Animales , Predisposición Genética a la EnfermedadRESUMEN
Introduction: Idiopathic normal pressure hydrocephalus (iNPH) is a kind of hydrocephalus that is easily to be misdiagnosed with brain atrophy due to the similarity of ventricular dilation and cognitive impairment. In this case, we present an old male patient who was diagnosed with iNPH by multimodality approaches. Outcomes: A 68-year-old male patient, with deteriorated gait, declined cognitive function for at least 3 years and urinary incontinence for 3 months. The doctors suspected him a patient with hydrocephalus or Alzheimer's disease based on his symptoms. We used multimodality diagnostic approaches including brain imaging, cerebrospinal fluid tap test, continuous intracranial pressure monitoring, and infusion study to make the final diagnosis of iNPH. He underwent ventriculoperitoneal shunt surgery and was well recovered. Conclusion: This case demonstrates the efficacy of using multimodality approaches for iNPH diagnosis, which saves patient time and clinical cost, worthy of further promotion.
RESUMEN
With the development of society and the improvement of people's living standards, there is an increasing demand for melanin-inhibiting products that prioritize health, safety, and efficacy. Therefore, the development of natural products that can safely and efficiently inhibit melanin synthesis is of great social significance and has significant market potential. In this paper, by reviewing the literature reported in recent years, we summarized the natural products with inhibition of melanin synthesis effects that have been put into or not yet put into the market, and classified them according to the chemical groups of their compounds or the extraction methods of the natural products. Through the summary analysis, we found that these compounds mainly include terpenoids, phenylpropanoids, flavonoids and so on, while the natural product extracts mainly include methanol extracts, ethanol extracts, and aqueous extracts. Their main inhibition of melanin synthesis mechanisms include: (1) direct inhibition of tyrosinase activity; (2) down-regulation of the α-MSH-MC1R, Wnt, NO, PI3K/Akt and MAPK pathways through the expression of MITF and its downstream genes TYR, TRP-1, and TRP-2; (3) antioxidant; (4) inhibition of melanocyte growth through cytotoxicity; (5) inhibition of melanosome production and transport. This paper provides an in-depth discussion on the research progress of whitening natural products and their market value. The aim is to offer guidance for future research and development of natural skin whitening products.
RESUMEN
(1) Objective: To explore the neurobiological effects of terahertz (THz) radiation on zebrafish larvae using calcium (Ca2+) imaging technology. (2) Methods: Zebrafish larvae at 7 days post fertilization (dpf) were exposed to THz radiation for 10 or 20 min; the frequency was 2.52 THz and the amplitude 50 mW/cm2. The behavioral experiments, neural Ca2+ imaging, and quantitative polymerase chain reaction (qPCR) of the dopamine-related genes were conducted following the irradiation. (3) Results: Compared with the control group, the behavioral experiments demonstrated that THz radiation significantly increased the distance travelled and speed of zebrafish larvae. In addition, the maximum acceleration and motion frequency were elevated in the 20 min radiation group. The neural Ca2+ imaging results indicated a substantial increase in zebrafish neuronal activity. qPCR experiments revealed a significant upregulation of dopamine-related genes, such as drd2b, drd4a, slc6a3 and th. (4) Conclusion: THz radiation (2.52 THz, 50 mW/cm2, 20 min) upregulated dopamine-related genes and significantly enhanced neuronal excitability, and the neurobiological effect of THz radiation can be visualized using neural Ca2+ imaging in vivo.
Asunto(s)
Calcio , Pez Cebra , Animales , Radiación Terahertz , Larva , DopaminaRESUMEN
Mammals exhibit limited heart regeneration ability, which can lead to heart failure after myocardial infarction. In contrast, zebrafish exhibit remarkable cardiac regeneration capacity. Several cell types and signaling pathways have been reported to participate in this process. However, a comprehensive analysis of how different cells and signals interact and coordinate to regulate cardiac regeneration is unavailable. We collected major cardiac cell types from zebrafish and performed high-precision single-cell transcriptome analyses during both development and post-injury regeneration. We revealed the cellular heterogeneity as well as the molecular progress of cardiomyocytes during these processes, and identified a subtype of atrial cardiomyocyte exhibiting a stem-like state which may transdifferentiate into ventricular cardiomyocytes during regeneration. Furthermore, we identified a regeneration-induced cell (RIC) population in the epicardium-derived cells (EPDC), and demonstrated Angiopoietin 4 (Angpt4) as a specific regulator of heart regeneration. angpt4 expression is specifically and transiently activated in RIC, which initiates a signaling cascade from EPDC to endocardium through the Tie2-MAPK pathway, and further induces activation of cathepsin K in cardiomyocytes through RA signaling. Loss of angpt4 leads to defects in scar tissue resolution and cardiomyocyte proliferation, while overexpression of angpt4 accelerates regeneration. Furthermore, we found that ANGPT4 could enhance proliferation of neonatal rat cardiomyocytes, and promote cardiac repair in mice after myocardial infarction, indicating that the function of Angpt4 is conserved in mammals. Our study provides a mechanistic understanding of heart regeneration at single-cell precision, identifies Angpt4 as a key regulator of cardiomyocyte proliferation and regeneration, and offers a novel therapeutic target for improved recovery after human heart injuries.
Asunto(s)
Infarto del Miocardio , Pez Cebra , Humanos , Ratones , Ratas , Proliferación Celular , Corazón/fisiología , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Pericardio/metabolismo , Análisis de la Célula Individual , Pez Cebra/metabolismo , AnimalesRESUMEN
Parkinson's disease is the second most prevalent neurodegenerative disease after Alzheimer's disease, mostly happened in the elder population and the prevalence gradually increased with age. Parkinson's disease is a movement disorder that severely affects patients' daily life. The mechanism of Parkinson's disease still remains unknown, however, studies already proved that the damage or absence of dopaminergic neurons located in the substantia nigra and the decreased dopamine in the striatum are significantly related to Parkinson's disease. To date, the mainstream treatment of Parkinson's disease has been achieved by alleviating its associated morbid symptoms, such as the use of levodopa, carbidopa, dopamine receptor agonists, monoamine oxidase type B inhibitors, anticholinergic drugs, etc. However, strong side effects, even toxicity, have been reported after using these drugs, with reduced effectiveness over time. Plant compounds have shown good therapeutic effects in neurodegenerative diseases as a less toxic treatment. In this review, we have compiled several natural plant compounds and classified the currently reported compounds for therapeutic use based on their structural parent nuclei and constituent elements. We wish to inspire new ideas for the treatment of Parkinson's disease by summarizing their mechanisms.
Asunto(s)
Productos Biológicos , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Anciano , Enfermedad de Parkinson/tratamiento farmacológico , Levodopa , Carbidopa , Dopamina , Agonistas de Dopamina/uso terapéutico , Productos Biológicos/uso terapéutico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Monoaminooxidasa/uso terapéutico , Antagonistas ColinérgicosRESUMEN
Airy light-sheet microscopy is rapidly gaining importance for imaging intact biological specimens because of the rapid speed, high resolution, and wide field nature of the imaging method. However, the depth of field (DOF) of the detection objective imposes limitations on the modulation transfer function (MTF) of the light sheet, which in turn affects the size of the field of view (FOV). Here we present an optimized phase modulation model, based on 'Airy-like' beam family, to stretch the curved lobes, which brings a wider FOV while maintaining high resolution. In addition, we further develop a planar 'Airy-like' light-sheet by two-photon excitation which can avoid the deconvolution process. We validated the new imaging method by performing a real-time monitoring of the dynamic process of cerebral hemorrhage in zebrafish larva. The proposed Airy-like beam-based light-sheet microscopy has great potential to be applied to the precise screening of cerebral hemorrhage-related drugs to help precision medicine in the future.
Asunto(s)
Microscopía , Pez Cebra , Animales , Hemorragia Cerebral/diagnóstico por imagen , Larva , Microscopía/métodos , FotonesRESUMEN
Adult mammalian hearts show limited capacity to proliferate after injury, while zebrafish are capable to completely regenerate injured hearts through the proliferation of spared cardiomyocytes. BMP and Notch signaling pathways have been implicated in cardiomyocyte proliferation during zebrafish heart regeneration. However, the molecular mechanism underneath this process as well as the interaction between these two pathways remains to be further explored. In this study we showed BMP signaling was activated after ventricle ablation and acted epistatic downstream of Notch signaling. Inhibition of both signaling pathways differentially influenced ventricle regeneration and cardiomyocyte proliferation, as revealed by time-lapse analysis using a cardiomyocyte-specific FUCCI (fluorescent ubiquitylation-based cell cycle indicator) system. Further experiments revealed that inhibition of BMP and Notch signaling led to cell-cycle arrest at different phases. Overall, our results shed light on the interaction between BMP and Notch signaling pathways and their functions in cardiomyocyte proliferation during cardiac regeneration.
Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas/metabolismo , Corazón/fisiología , Miocitos Cardíacos/citología , Receptores Notch/metabolismo , Regeneración , Transducción de Señal , Animales , Puntos de Control del Ciclo Celular , Proliferación Celular , Miocitos Cardíacos/metabolismo , Ubiquitinación , Pez Cebra/fisiologíaRESUMEN
[This corrects the article DOI: 10.3389/fcell.2021.632372.].
RESUMEN
Unlike mammals, zebrafish can regenerate injured hearts even in the adult stage. Cardiac regeneration requires the coordination of cardiomyocyte (CM) proliferation and migration. The TGF-ß/Smad3 signaling pathway has been implicated in cardiac regeneration, but the molecular mechanisms by which this pathway regulates CM proliferation and migration have not been fully illustrated. Here, we investigated the function of TGF-ß/Smad3 signaling in a zebrafish model of ventricular ablation. Multiple components of this pathway were upregulated/activated after injury. Utilizing a specific inhibitor of Smad3, we detected an increased ratio of unrecovered hearts. Transcriptomic analysis suggested that the TGF-ß/Smad3 signaling pathway could affect CM proliferation and migration. Further analysis demonstrated that the CM cell cycle was disrupted and the epithelial-mesenchymal transition (EMT)-like response was impaired, which limited cardiac regeneration. Altogether, our study reveals an important function of TGF-ß/Smad3 signaling in CM cell cycle progression and EMT process during zebrafish ventricle regeneration.
RESUMEN
It remains challenging to construct a complete cell lineage map of the origin of vascular endothelial cells in any vertebrate embryo. Here, we report the application of in toto light-sheet fluorescence imaging of embryos to trace the origin of vascular endothelial cells (ECs) at single-cell resolution in zebrafish. We first adapted a previously reported method to embryo mounting and light-sheet imaging, created an alignment, fusion, and extraction all-in-one software (AFEIO) for processing big data, and performed quantitative analysis of cell lineage relationships using commercially available Imaris software. Our data revealed that vascular ECs originated from broad regions of the gastrula along the dorsal-ventral and anterior-posterior axes, of which the dorsal-anterior cells contributed to cerebral ECs, the dorsal-lateral cells to anterior trunk ECs, and the ventral-lateral cells to posterior trunk and tail ECs. Therefore, this work, to our knowledge, charts the first comprehensive map of the gastrula origin of vascular ECs in zebrafish, and has potential applications for studying the origin of any embryonic organs in zebrafish and other model organisms.
Asunto(s)
Proteínas del Choque Térmico HSP40/genética , Corazón/crecimiento & desarrollo , Infarto del Miocardio/terapia , Regeneración/genética , Animales , Proliferación Celular/genética , Modelos Animales de Enfermedad , Corazón/fisiopatología , Humanos , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Pez Cebra/genética , Proteínas de Pez Cebra/genéticaRESUMEN
Owing to its tissue-penetration ability, multi-photon fluorescence microscopy allows for the high-resolution, non-invasive imaging of deep tissue in vivo; the recently developed three-photon microscopy (3PM) has extended the depth of high-resolution, non-invasive functional imaging of mouse brains to beyond 1.0 mm. However, the low repetition rate of femtosecond lasers that are normally used in 3PM limits the temporal resolution of point-scanning three-photon microscopy. To increase the volumetric imaging speed of 3PM, we propose a combination of an axially elongated needle-like Bessel-beam with three-photon excitation (3PE) to image biological samples with an extended depth of focus. We demonstrate the higher signal-to-background ratio (SBR) of the Bessel-beam 3PM compared to the two-photon version both theoretically and experimentally. Finally, we perform simultaneous calcium imaging of brain regions at different axial locations in live fruit flies and rapid volumetric imaging of neuronal structures in live mouse brains. These results highlight the unique advantage of conducting rapid volumetric imaging with a high SBR in the deep brain in vivo using scanning Bessel-3PM.
RESUMEN
Conventional genetic screens for recessive mutants are inadequate for studying biological processes in the adult vertebrate due to embryonic lethality. Here, we report that a novel inducible mutagenesis system enables to study gene function in both embryonic and adult zebrafish. This system yields genetic mutants with conditional ectopic over- or under-expression of genes in F1 heterozygotes by utilizing inducible Tet-On transcriptional activation of sense or anti-sense transcripts from entrapped genes by Tol2 transposase-meditated transgenesis. Pilot screens identified 37 phenotypic mutants displaying embryonic defects (34 lines), adult fin regeneration defects (7 lines), or defects at both stages (4 lines). Combination of various techniques (such as: generating a new mutant allele, injecting gene specific morpholino or mRNA etc) confirms that Dox-induced embryonic abnormalities in 10 mutants are due to dysfunction of entrapped genes; and that Dox-induced under-expression of 6 genes causes abnormal adult fin regeneration. Together, this work presents a powerful mutagenesis system for genetic analysis from zebrafish embryos to adults in particular and other model organisms in general.
Asunto(s)
Mutagénesis , Proteínas de Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Animales , Clonación Molecular , Regulación del Desarrollo de la Expresión Génica , Técnicas de Transferencia de Gen , Fenotipo , Activación Transcripcional , Pez Cebra/genéticaRESUMEN
Novel stem cells expressing stage-specific embryonic antigen 3 (SSEA-3) reside among human dermal fibroblasts and are known as multilineage-differentiating stress-enduring (Muse) cells. They enhance the generation efficiency of induced pluripotent stem cells. However, Muse cells have only been found in humans. We aimed to isolate SSEA3-positive cells from terminally differentiated skin fibroblasts of adult goat and determine their pluripotency. Cell clusters from SSEA3(+) populations possessed stem cell-like morphological features and normal karyotypes, were consistently positive for alkaline phosphatase, and expressed stem cell pluripotency markers. These SSEA3(+) cells remained undifferentiated over eight passages in suspension culture and were able to differentiate into cells of all three germ layers in vitro and in vivo. Our combined findings suggest that a subset of adult stem cells expressing SSEA3 also exist among adult goat skin fibroblasts. We are the first to report that multipotent adult goat cells exist among terminally differentiated goat skin in suspension culture. Our results also provide a promising platform for generation of a transgenic goat, because the undifferentiated state of stem cells was thought to be more efficient as donor cells for somatic cell nuclear transfer.
Asunto(s)
Antígenos de Carbohidratos Asociados a Tumores/metabolismo , Separación Celular/métodos , Fibroblastos/citología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Piel/citología , Antígenos Embrionarios Específico de Estadio/metabolismo , Fosfatasa Alcalina/metabolismo , Animales , Animales Modificados Genéticamente , Biomarcadores/metabolismo , Técnicas de Cultivo de Célula , Diferenciación Celular/fisiología , Células Cultivadas , Femenino , CabrasRESUMEN
Previous studies have demonstrated that skin stem cells expressing the pluripotency marker stage-specific embryonic antigen 3 (SSEA3) are easier to reprogram into induced pluripotent stem cells (iPSCs) than skin fibroblasts. Furthermore, it is widely speculated that the undifferentiated state may make stem cells more efficient donor cells for somatic cell nuclear transfer (SCNT). In this study, we isolated SSEA3(+) cells from goat skin fibroblast cells (SFCs) using fluorescence-activated cell sorting (FACS) and examined expression of pluripotency markers and in vitro development of cloned embryos following SCNT. Results showed that cell clusters from SSEA3(+) cells were consistently positive for alkaline phosphatase staining and pluripotency markers, Nanog, Oct4, Sox2, and SSEA3. The cleavage rate of cloned embryos derived from SSEA3(+) cells did not differ compared with SFCs (70.5±0.8% and 68.4±2.1%, respectively), but was significantly higher compared with SSEA3(-) cells (64.9±1.6%, p<0.05). The blastocyst rate was significantly increased in the SSEA3(+) cell group compared with the SFC and SSEA3(-) cell groups (30.3±1.2% vs. 21.2±0.9 and 19.0±1.0%, respectively, p<0.05). The quality of cloned blastocysts from SSEA3(+) cells was higher compared with SFCs and SSEA3(-) cells, based on total cell number and number of apoptotic cells per blastocyst. These findings suggest that using SSEA3(+) cells as donors for SCNT is beneficial for enhancing in vitro development and quality of cloned goat embryos.