Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38892242

RESUMEN

Skeletal muscle atrophy (SMA) is caused by a rise in muscle breakdown and a decline in protein synthesis, with a consequent loss of mass and function. This study characterized the effect of an amino acid mixture (AA) in models of SMA, focusing on mitochondria. C57/Bl6 mice underwent immobilization of one hindlimb (I) or cardiotoxin-induced muscle injury (C) and were compared with controls (CTRL). Mice were then administered AA in drinking water for 10 days and compared to a placebo group. With respect to CTRL, I and C reduced running time and distance, along with grip strength; however, the reduction was prevented by AA. Tibialis anterior (TA) muscles were used for histology and mitochondria isolation. I and C resulted in TA atrophy, characterized by a reduction in both wet weight and TA/body weight ratio and smaller myofibers than those of CTRL. Interestingly, these alterations were lightly observed in mice treated with AA. The mitochondrial yield from the TA of I and C mice was lower than that of CTRL but not in AA-treated mice. AA also preserved mitochondrial bioenergetics in TA muscle from I and C mice. To conclude, this study demonstrates that AA prevents loss of muscle mass and function in SMA by protecting mitochondria.


Asunto(s)
Aminoácidos , Metabolismo Energético , Ratones Endogámicos C57BL , Músculo Esquelético , Atrofia Muscular , Animales , Ratones , Metabolismo Energético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Aminoácidos/farmacología , Aminoácidos/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/patología , Atrofia Muscular/etiología , Masculino , Modelos Animales de Enfermedad , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/patología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos
2.
Cells ; 13(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38786077

RESUMEN

Patients with COVID-19 have coagulation and platelet disorders, with platelet alterations and thrombocytopenia representing negative prognostic parameters associated with severe forms of the disease and increased lethality. METHODS: The aim of this study was to study the expression of platelet glycoprotein IIIa (CD61), playing a critical role in platelet aggregation, together with TRL-2 as a marker of innate immune activation. RESULTS: A total of 25 patients were investigated, with the majority (24/25, 96%) having co-morbidities and dying from a fatal form of SARS-CoV-2(+) infection (COVID-19+), with 13 men and 12 females ranging in age from 45 to 80 years. When compared to a control group of SARS-CoV-2 (-) negative lungs (COVID-19-), TLR-2 expression was up-regulated in a subset of patients with deadly COVID-19 fatal lung illness. The proportion of Spike-1 (+) patients found by PCR and ISH correlates to the proportion of Spike-S1-positive cases as detected by digital pathology examination. Furthermore, CD61 expression was considerably higher in the lungs of deceased patients. In conclusion, we demonstrate that innate immune prolonged hyperactivation is related to platelet/megakaryocyte over-expression in the lung. CONCLUSIONS: Microthrombosis in deadly COVID-19+ lung disease is associated with an increase in the number of CD61+ platelets and megakaryocytes in the pulmonary interstitium, as well as their functional activation; this phenomenon is associated with increased expression of innate immunity TLR2+ cells, which binds the SARS-CoV-2 E protein, and significantly with the persistence of the Spike-S1 viral sequence.


Asunto(s)
COVID-19 , Pulmón , Megacariocitos , SARS-CoV-2 , Trombosis , Receptor Toll-Like 2 , Regulación hacia Arriba , Humanos , COVID-19/patología , COVID-19/inmunología , COVID-19/metabolismo , Masculino , Femenino , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 2/genética , Megacariocitos/metabolismo , Megacariocitos/patología , Megacariocitos/virología , Anciano , Persona de Mediana Edad , Anciano de 80 o más Años , Pulmón/patología , Pulmón/virología , Pulmón/metabolismo , Regulación hacia Arriba/genética , Trombosis/patología , Integrina beta3/metabolismo , Integrina beta3/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Neumonía Viral/patología , Neumonía Viral/inmunología , Neumonía Viral/mortalidad , Neumonía Viral/virología , Neumonía Viral/metabolismo , Inmunidad Innata , Pandemias
3.
Pathologica ; 115(5): 263-274, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38054901

RESUMEN

COVID-19 identification is routinely performed on fresh samples, such as nasopharyngeal and oropharyngeal swabs, even if, the detection of the virus in formalin-fixed paraffin-embedded (FFPE) autopsy tissues could help to underlie mechanisms of the pathogenesis that are not well understood.The gold standard for COVID-19 detection in FFPE samples remains the qRT-PCR as in swab samples, contextually other methods have been developed, including immunohistochemistry (IHC), and in situ hybridization (ISH). In this manuscript, we summarize the main data regarding the methods of COVID-19 detection in pulmonary and extra-pulmonary post-mortem samples, and especially the sensitivity and specificity of these assays will be discussed.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , Reacción en Cadena de la Polimerasa
4.
J Clin Med ; 12(21)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37959281

RESUMEN

BACKGROUND: Inflammatory microenvironment is an essential component of all tumors, including thyroid cancer. Autoimmune thyroid diseases are often associated with thyroid cancer. CD25, expressed in Treg cells and B cells, has been found to be associated with autoimmune thyroid diseases and the NFkB pathway is critical to tumor formation, regulating immune-related genes, and pro-inflammatory cytokine. METHODS: Protein expression of CD25 and NFkB and its phosphorylated form was analyzed by immunohistochemistry in 80 patients with thyroid cancer (10 cases of cancers with Hashimoto's thyroiditis and 70 cases without). RESULTS: CD25 was mainly detected in the nucleus of the inflammatory cells such as in the thyrocytes and neoplastic cells. Protein staining was detected in the T-lymphocytes of the outermost zone of the lymphoid follicles. Moreover, in all cancer alterations, there were a higher level of p-NFkB than in the surrounding tissues. Again, p-NFkB staining was evident in neoplastic cells but not evident in inflammatory cells. CONCLUSIONS: Strong inflammatory infiltrate in the tumor microenvironment is correlated with an invasive phenotype. CD25 and p-NFkB levels were statistically significantly overexpressed in cancer cells.

5.
Int J Mol Sci ; 24(17)2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37686069

RESUMEN

To the current data, there have been 6,955,141 COVID-19-related deaths worldwide, reported to WHO. Toll-like receptors (TLRs) implicated in bacterial and virus sensing could be a crosstalk between activation of persistent innate-immune inflammation, and macrophage's sub-population alterations, implicated in cytokine storm, macrophage over-activation syndrome, unresolved Acute Respiratory Disease Syndrome (ARDS), and death. The aim of this study is to demonstrate the association between Toll-like-receptor-4 (TLR-4)-induced inflammation and macrophage imbalance in the lung inflammatory infiltrate of lethal COVID-19 disease. Twenty-five cases of autopsy lung tissues were studied by digital pathology-based immunohistochemistry to evaluate expression levels of TLR-4 (CD 284), pan-macrophage marker CD68 (clone KP1), sub-population marker related to alveolar macrophage Galectin-3 (GAL-3) (clone 9C4), and myeloid derived CD163 (clone MRQ-26), respectively. SARS-CoV-2 viral persistence has been evaluated by in situ hybridation (ISH) method. This study showed TLR-4 up-regulation in a subgroup of patients, increased macrophage infiltration in both Spike-1(+) and Spike-1(-) lungs (p < 0.0001), and a macrophage shift with important down-regulation of GAL-3(+) alveolar macrophages associated with Spike-1 persistence (p < 0.05), in favor of CD163(+) myeloid derived monocyte-macrophages. Data show that TLR-4 expression induces a persistent activation of the inflammation, with inefficient resolution, and pathological macrophage shift, thus explaining one of the mechanisms of lethal COVID-19.


Asunto(s)
COVID-19 , Galectina 3 , Humanos , Receptor Toll-Like 4 , SARS-CoV-2 , Macrófagos
6.
Pathol Res Pract ; 248: 154656, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37406376

RESUMEN

BACKGROUND: Management of oral potentially malignant disorders (OPMDs) is still challenging. Despite the diagnostic ascertainment by bioptic examination, this method is poorly informative of the prognosis and subsequent malignant transformation. Prognosis is based on histological findings by grading of dysplasia. Immunohistochemical expression of p16INK4a has been investigated in different studies, with controversial results. In this scenario, we systematically revised the current evidence about p16INK4a immunohistochemical expression and the risk of malignization of OPMDs. MATERIAL AND METHODS: After a proper set of keywords combination, 5 databases were accessed and screened to select eligible studies. The protocol was previously registered on PROSPERO (Protocol ID: CRD42022355931). Data were obtained directly from the primary studies as a measure to determine the relationship between CDKN2A/P16INK4a expression and the malignant transformation of OPMDs. Heterogeneity and publication bias were investigated by different tools, such as Cochran's Q test, Galbraith plot and Egger and Begg Mazumdar's rank tests. RESULTS: Meta-analysis revealed a twofold increased risk to malignant development (RR = 2.01, 95% CI = 1.36-2.96 - I2 = 0%). Subgroup analysis did not highlight any relevant heterogeneity. Galbraith plot showed that no individual study could be considered as an important outlier. CONCLUSION: Pooled analysis showed that p16INK4a assessment may arise adjunct tool to dysplasia grading, leading to an optimized determination of the potential progression to cancer of OPMDs. The p16INK4a overexpression analysis by immunohistochemistry techniques has a multitude of virtues that may facilitate its incorporation in the day-to-day prognostic study of OPMDs.


Asunto(s)
Neoplasias de la Boca , Lesiones Precancerosas , Humanos , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Biomarcadores de Tumor/análisis , Pronóstico , Neoplasias de la Boca/patología
7.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36768260

RESUMEN

Redox homeostasis is determinant in the modulation of quiescence/self-renewal/differentiation of stem cell lines. The aim of this study consisted of defining the impact of redox modifications on cell fate in a human hepatic progenitor line. To achieve this, the HepaRG cell line, which shows oval ductular bipotent characteristics, was used. The impact of redox status on the balance between self-renewal and differentiation of HepaRG cells was investigated using different methodological approaches. A bioinformatic analysis initially proved that the trans-differentiation of HepaRG toward bipotent progenitors is associated with changes in redox metabolism. We then exposed confluent HepaRG (intermediate differentiation phase) to oxidized (H2O2) or reduced (N-acetylcysteine) extracellular environments, observing that oxidation promotes the acquisition of a mature HepaRG phenotype, while a reduced culture medium stimulates de-differentiation. These results were finally confirmed through pharmacological modulation of the nuclear factor (erythroid-derived 2)-like 2 (NRF2), a principal modulator of the antioxidant response, in confluent HepaRG. NRF2 inhibition led to intracellular pro-oxidative status and HepaRG differentiation, while its activation was associated with low levels of reactive species and de-differentiation. In conclusion, this study shows that both intra- and extracellular redox balance are crucial in the determination of HepaRG fate. The impact of redox status in the differentiation potential of HepaRG cells is significant on the utilization of this cell line in pre-clinical studies.


Asunto(s)
Peróxido de Hidrógeno , Factor 2 Relacionado con NF-E2 , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Peróxido de Hidrógeno/metabolismo , Hígado/metabolismo , Línea Celular , Células Madre/metabolismo , Diferenciación Celular/fisiología , Oxidación-Reducción , Hepatocitos/metabolismo
8.
Clin Transl Med ; 12(11): e949, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36394205

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a member of the coronavirus family that causes the novel coronavirus disease first diagnosed in 2019 (COVID-19). Although many studies have been carried out in recent months to determine why the disease clinical presentations and outcomes can vary significantly from asymptomatic to severe or lethal, the underlying mechanisms are not fully understood. It is likely that unique individual characteristics can strongly influence the broad disease variability; thus, tailored diagnostic and therapeutic approaches are needed to improve clinical outcomes. The circadian clock is a critical regulatory mechanism orchestrating major physiological and pathological processes. It is generally accepted that more than half of the cell-specific genes in any given organ are under circadian control. Although it is known that a specific role of the circadian clock is to coordinate the immune system's steady-state function and response to infectious threats, the links between the circadian clock and SARS-CoV-2 infection are only now emerging. How inter-individual variability of the circadian profile and its dysregulation may play a role in the differences noted in the COVID-19-related disease presentations, and outcome remains largely underinvestigated. This review summarizes the current evidence on the potential links between circadian clock dysregulation and SARS-CoV-2 infection susceptibility, disease presentation and progression, and clinical outcomes. Further research in this area may contribute towards novel circadian-centred prognostic, diagnostic and therapeutic approaches for COVID-19 in the era of precision health.


Asunto(s)
COVID-19 , Relojes Circadianos , Garrapatas , Animales , SARS-CoV-2
9.
Biomolecules ; 12(6)2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35740900

RESUMEN

Nevoid basal cell carcinoma syndrome (NBCCS) associated odontogenic keratocysts (OKCs) show more aggressive behavior and it has a higher frequency of relapse than non-syndromic OKCs. Stromal myofibroblasts (MFs), characterized by α-smooth muscle actin (αSMA), desmin and caldesmon expression, and metalloproteinases (MMPs) have an essential role in the remodeling of the extracellular matrix (ECM). The aim of the study is to analyze the immunohistochemical expression of MMP-7, MMP-9, αSMA and other new markers in the study of OKCs MFs such as desmin and caldesmon in NBCCS-associated OKCs compared to recurrent and sporadic keratocysts. Fourty 40 patients (23 M and 17 F) underwent surgery to remove the OKCs. The histological sections in paraffin were incubated with markers antibodies and a semi-quantitative score was used to evaluate the immunoreactivity. Densitometric analysis showed a very significantly increased expression of αSMA, caldesmon, MMP-7 and MMP-9 in NBCCS-OKCs compared to non-syndromic OKCs (p < 0.001). However, desmin showed a not significant increased expression in non-syndromic OKC compared to NBCCS-OKCs specimens in which desmin was slightly or not at all expressed. NBCSS-OKCs showed a greater distribution of MFs compared to the other OKCs subtypes. Further studies will be needed to evaluate whether the different expressions of these markers can be correlated to a different clinical behavior.


Asunto(s)
Síndrome del Nevo Basocelular , Quistes Odontogénicos , Actinas/metabolismo , Síndrome del Nevo Basocelular/metabolismo , Síndrome del Nevo Basocelular/patología , Proteínas de Unión a Calmodulina , Desmina/metabolismo , Humanos , Metaloproteinasa 7 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Músculo Liso/metabolismo , Quistes Odontogénicos/metabolismo , Quistes Odontogénicos/patología
10.
Biomolecules ; 12(4)2022 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-35454175

RESUMEN

Fibrous dysplasia (FD) and hyperparathyroidism-jaw tumor syndrome (HPT-JT) are well-characterized benign bone fibro-osseous lesions. The intracellular mechanism leading to excessive deposition of fibrous tissue and alteration of differentiation processes leading to osteomalacia have not yet been fully clarified. Tissue Microarray (TMA)-based immunohistochemical expression of ß-catenin, CK-AE1/AE3, Ki-67, cadherins and P-Runx2 were analyzed in archival samples from nine patients affected by FD and HPT-JT and in seven controls, with the aim of elucidating the contribution of these molecules (ß-catenin, cadherins and P-Runx2) in the osteoblast differentiation pathway. ß-catenin was strongly upregulated in FD, showing a hyper-cellulated pattern, while it was faintly expressed in bone tumors associated with HPT-JT. Furthermore, the loss of expression of OB-cadherin in osteoblast lineage in FD was accompanied by N-cadherin and P-cadherin upregulation (p < 0.05), while E-cadherin showed a minor role in these pathological processes. P-Runx2 showed over-expression in six out of eight cases of FD and stained moderately positive in the rimming lining osteoblasts in HPT-JT syndrome. ß-catenin plays a central role in fibrous tissue proliferation and accompanies the lack of differentiation of osteoblast precursors in mature osteoblasts in FD. The study showed that the combined evaluation of the histological characteristics and the histochemical and immunohistochemical profile of key molecules involved in osteoblast differentiation are useful in the diagnosis, classification and therapeutic management of fibrous-osseous lesions.


Asunto(s)
Hiperparatiroidismo , Neoplasias Maxilomandibulares , Adenoma , Cadherinas/genética , Cadherinas/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Fibroma , Humanos , Neoplasias Maxilomandibulares/genética , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA