Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39143699

RESUMEN

This study emphasizes the innovative application of FePt and Cu core-shell nanostructures with increased lattice microstrain, coupled with Au single-atom catalysis, in significantly enhancing •OH generation for catalytic tumor therapy. The combination of core-shell with increased lattice microstrain and single-atom structures introduces an unexpected boost in hydroxyl radical (•OH) production, representing a pivotal advancement in strategies for enhancing reactive oxygen species. The creation of a core-shell structure, FePt@Cu, showcases a synergistic effect in •OH generation that surpasses the combined effects of FePt and Cu individually. Incorporating atomic Au with FePt@Cu/Au further enhances •OH production. Both FePt@Cu and FePt@Cu/Au structures boost the O2 → H2O2 → •OH reaction pathway and catalyze Fenton-like reactions. This enhancement is underpinned by DFT theoretical calculations revealing a reduced O2 adsorption energy and energy barrier, facilitated by lattice mismatch and the unique catalytic activity of single-atom Au. Notably, the FePt@Cu/Au structure demonstrates remarkable efficacy in tumor suppression and exhibits biodegradable properties, allowing for rapid excretion from the body. This dual attribute underscores its potential as a highly effective and safe cancer therapeutic agent.

2.
Adv Mater ; : e2407394, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148174

RESUMEN

Proton exchange membrane water electrolysers promise to usher in a new era of clean energy, but they remain a formidable obstacle in designing active and durable electrocatalysts for the acidic oxygen evolution reaction (OER). In this study, a protonated iridium oxide embedded with single-atom dispersed ruthenium atoms (H3.8Ir1- xRuxO4) that demonstrates exceptional activity and stability in acidic water oxidation is introduced. The single Ru dopants favorably induce localized oxygen vacancies in the Ir─O lattice, synergistically strengthening the adsorption of OOH* intermediates and enhancing the intrinsic OER activity. In addition, the preferential oxidation of Ru and the electronegativity of the oxygen vacancies significantly stabilize the Ir─O active sites, improving the OER stability. Consequently, the H3.8Ir1─ xRuxO4 catalyst shows an overpotential of 255 mV at 10 mA cm-2 and displays exceptional catalytic endurance in acidic electrolytes, surpassing 1100 h, representing a remarkable one-order-of-magnitude increase in stability compared to that of pristine H3.8IrO4. A proton exchange membrane electrolyser utilizing the H3.8Ir1- xRuxO4 catalyst as an anode exhibits stable performance for more than 1280 h under a high current density of 2 A cm-2.

3.
J Am Chem Soc ; 146(29): 20251-20262, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38996085

RESUMEN

A strain engineering strategy is crucial for designing a high-performance catalyst. However, how to control the strain in metastable phase two-dimensional (2D) materials is technically challenging due to their nanoscale sizes. Here, we report that cerium dioxide (CeO2) is an ideal loading material for tuning the in-plane strain in 2D metastable 1T-phase IrO2 (1T-IrO2) via an in situ growth method. Surprisingly, 5% CeO2 loaded 1T-IrO2 with 8% compressive strain achieves an overpotential of 194 mV at 10 mA cm-2 in a three-electrode system. It also retained a high current density of 900 mA cm-2 at a cell voltage of 1.8 V for a 400 h stability test in the proton-exchange membrane device. More importantly, the Fourier transform infrared measurements and density functional theory calculation reveal that the CeO2 induced strained 1T-IrO2 directly undergo the *O-*O radical coupling mechanism for O2 generation, totally different from the traditional adsorbate evolution mechanism in pure 1T-IrO2. These findings illustrate the important role of strain engineering in paving up an optimal catalytic pathway in order to achieve robust electrochemical performance.

4.
ACS Nano ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066738

RESUMEN

High-entropy perovskite oxides are promising materials in the field of electrocatalysis due to their advantages such as large spatial composition regulation, entropy effects, and tunable material properties. However, the preparation of high-entropy perovskite oxides with stable and controllable structures still remains challenging. Herein, we fabricated a series of high-entropy perovskite oxide porous nanotubes (PNTs) by electrospinning as efficient electrocatalysts for the nitrate reduction reaction (NO3RR). We further revealed that the different diffusion and decomposition behaviors of metal ions and polymers during the calcination process are the key to the formation of high-entropy perovskite oxide PNTs. Especially, LaSrNiCoMnFeCuO3 PNTs show excellent performance of the NO3RR, achieving the maximum NH3 Faradaic efficiency of almost 100%, yield rate of 1657.5 µg h-1 mgcat.-1, and durable stability after successive cycling, being one of the best electrocatalysts for the NO3RR. The mechanism studies show that the charge redistribution induced by the multisite synergistic effect and abundant unsaturated sites in the high-entropy perovskite oxide PNTs favors the adsorption of NO3- and key intermediates and reduces the catalytic energy barrier, thus further achieving high NO3- conversion efficiency.

5.
Sci Adv ; 10(30): eadl3693, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058768

RESUMEN

We report a catalyst family of high-entropy alloy (HEA) atomic layers having three elements from iron-group metals (IGMs) and two elements from platinum-group metals (PGMs). Ten distinct quinary compositions of IGM-PGM-HEA with precisely controlled square atomic arrangements are used to explore their impact on hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR). The PtRuFeCoNi atomic layers perform enhanced catalytic activity and durability toward HER and HOR when benchmarked against the other IGM-PGM-HEA and commercial Pt/C catalysts. Operando synchrotron x-ray absorption spectroscopy and density functional theory simulations confirm the cocktail effect arising from the multielement composition. This effect optimizes hydrogen-adsorption free energy and contributes to the remarkable catalytic activity observed in PtRuFeCoNi. In situ electron microscopy captures the phase transformation of metastable PtRuFeCoNi during the annealing process. They transform from random atomic mixing (25°C), to ordered L10 (300°C) and L12 (400°C) intermetallic, and finally phase-separated states (500°C).

6.
Adv Mater ; : e2404772, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822811

RESUMEN

While high-entropy alloys, high-entropy oxides, and high-entropy hydroxides, are advanced as a novel frontier in electrocatalytic oxygen evolution, their inherent activity deficiency poses a major challenge. To achieve the unlimited goal to tailor the structure-activity relationship in multicomponent systems, entropy-driven composition engineering presents substantial potential, by fabricating high-entropy anion-regulated transition metal compounds as sophisticated oxygen evolution reaction electrocatalysts. Herein, a versatile 2D high-entropy metal phosphorus trisulfide is developed as a promising and adjustable platform. Leveraging the multiple electron couplings and d-p orbital hybridizations induced by the cocktail effect, the exceptional oxygen evolution catalytic activity is disclosed upon van der Waals material (MnFeCoNiZn)PS3, exhibiting an impressively low overpotential of 240 mV at a current density of 10 mA cm-2, a minimal Tafel slope of 32 mV dec-1, and negligible degradation under varying current densities for over 96 h. Density functional theory calculations further offer insights into the correlation between orbital hybridization and catalytic performance within high-entropy systems, underscoring the contribution of active phosphorus centers on the substrate to performance enhancements. Moreover, by achieving electron redistribution to optimize the electron coordination environment, this work presents an effective strategy for advanced catalysts in energy-related applications.

7.
ACS Appl Mater Interfaces ; 16(27): 34437-34449, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38940318

RESUMEN

Harvesting solar energy to produce value-added chemicals from carbon dioxide (CO2) presents a promising route for addressing the complexities of sustainable energy systems and environmental issues. In this context, the development of metal-coordinated porous organic polymers (POPs) offers a vital avenue for improving the photocatalytic performance of organic motifs. The current study presents a metal-integrated photocatalytic system (namely, Zn@BP-POP) developed via a one-pot Friedel-Crafts (F.C.) acylation strategy, for solid-gas phase photochemical CO2 reduction to CO (CO2RR). The postsynthetic incorporation of metal (Zn) active sites on the host polymeric backbone of BP-POP significantly influences the catalytic activity. Notably, Zn@BP-POP demonstrates good photocatalytic performance in the absence of any cocatalyst and photosensitizer yielding CO while impeding the competitive hydrogen evolution reaction (HER) from water. The experimental findings collectively propose that the observed catalytic activity and selectivity arise from the synergistic interplay between the singular zinc catalytic centers and the light-harvesting capacity of the highly conjugated polymeric backbone. Further, X-ray absorption spectroscopy (XAS) analysis has significantly highlighted the prominent role played by the ZnN2O4 single sites in the polymeric framework for activating the gaseous CO2 molecules. Further, time-dependent density functional theory (DFT) analysis also reveals the thermodynamic feasibility of CO2RR over HER under optimized reaction conditions. This work cumulatively presents an effective strategy to demonstrate the importance of metal-active sites and effectively establish their structure-activity relationship during photocatalysis.

8.
Nano Lett ; 24(25): 7645-7653, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38875704

RESUMEN

Understanding the nucleation and growth mechanism of 3d transition bimetallic nanocrystals (NCs) is crucial to developing NCs with tailored nanostructures and properties. However, it remains a significant challenge due to the complexity of 3d bimetallic NCs formation and their sensitivity to oxygen. Here, by combining in situ electron microscopy and synchrotron X-ray techniques, we elucidate the nucleation and growth pathways of Fe-Ni NCs. Interestingly, the formation of Fe-Ni NCs emerges from the assimilation of Fe into Ni clusters together with the reduction of Fe-Ni oxides. Subsequently, these NCs undergo solid-state phase transitions, resulting in two distinct solid solutions, ultimately dominated by γ-Fe3Ni2. Furthermore, we deconvolve the interplays between local coordination and electronic state concerning the growth temperature. We directly visualize the oxidation-state distributions of Fe and Ni at the nanoscale and investigate their changes. This work may reshape and enhance the understanding of nucleation and growth in atomic crystallization.

9.
Nano Lett ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837959

RESUMEN

Propane dehydrogenation (PDH) serves as a pivotal intentional technique to produce propylene. The stability of PDH catalysts is generally restricted by the readsorption of propylene which can subsequently undergo side reactions for coke formation. Herein, we demonstrate an ultrastable PDH catalyst by encapsulating PtIn clusters within silicalite-1 which serves as an efficient promoter for olefin desorption. The mean lifetime of PtIn@S-1 (S-1, silicalite-1) was calculated as 37317 h with high propylene selectivity of >97% at 580 °C with a weight hourly space velocity (WHSV) of 4.7 h-1. With an ultrahigh WHSV of 1128 h-1, which pushed the catalyst away from the equilibrium conversion to 13.3%, PtIn@S-1 substantially outperformed other reported PDH catalysts in terms of mean lifetime (32058 h), reaction rates (3.42 molpropylene gcat-1 h-1 and 341.90 molpropylene gPt-1 h-1), and total turnover number (14387.30 kgpropylene gcat-1). The developed catalyst is likely to lead the way to scalable PDH applications.

10.
ACS Nano ; 18(22): 14496-14506, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38771969

RESUMEN

Hydrogen obtained from electrochemical water splitting is the most promising clean energy carrier, which is hindered by the sluggish kinetics of the oxygen evolution reaction (OER). Thus, the development of an efficient OER electrocatalyst using nonprecious 3d transition elements is desirable. Multielement synergistic effect and lattice oxygen oxidation are two well-known mechanisms to enhance the OER activity of catalysts. The latter is generally related to the high valence state of 3d transition elements leading to structural destabilization under the OER condition. We have found that Al doping in nanosheet Ni-Fe hydroxide exhibits 2-fold advantage: (1) a strong enhanced OER activity from 277 mV to 238 mV at 10 mA cm-2 as the Ni valence state increases from Ni3.58+ to Ni3.79+ observed from in situ X-ray absorption spectra. (2) Operational stability is strengthened, while weakness is expected since the increased NiIV content with 3d8L2 (L denotes O 2p hole) would lead to structural instability. This contradiction is attributed to a reduced lattice oxygen contribution to the OER upon Al doping, as verified through in situ Raman spectroscopy, while the enhanced OER activity is interpreted as an enormous gain in exchange energy of FeIV-NiIV, facilitated by their intersite hopping. This study reveals a mechanism of Fe-Ni synergy effect to enhance OER activity and simultaneously to strengthen operational stability by suppressing the contribution of lattice oxygen.

11.
Chem Sci ; 15(11): 3928-3935, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38487225

RESUMEN

Anion exchange membrane fuel cells are a potentially cost-effective energy conversion technology, however, the electrocatalyst for the anodic hydrogen oxidation reaction (HOR) suffers from sluggish kinetics under alkaline conditions. Herein, we report that Ru-based nanosheets with amorphous-crystalline heterointerfaces of Ru and Ti-doped RuO2 (a/c-Ru/Ti-RuO2) can serve as a highly efficient HOR catalyst with a mass activity of 4.16 A mgRu-1, which is 19.8-fold higher than that of commercial Pt/C. Detailed characterization studies show that abundant amorphous-crystalline heterointerfaces of a/c-Ru/Ti-RuO2 nanosheets provide oxygen vacancies and unsaturated coordination bonds for balancing adsorption of hydrogen and hydroxyl species on Ru active sites to elevate HOR activity. Moreover, Ti doping can facilitate CO oxidation, leading to enhanced strength to CO poisoning. This work provides a strategy for enhancing alkaline HOR performance over Ru-based catalysts with heteroatom and heterointerface dual-engineering, which will attract immediate interest in chemistry, materials science and beyond.

12.
Nat Commun ; 15(1): 1447, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365760

RESUMEN

Exploring an active and cost-effective electrocatalyst alternative to carbon-supported platinum nanoparticles for alkaline hydrogen evolution reaction (HER) have remained elusive to date. Here, we report a catalyst based on platinum single atoms (SAs) doped into the hetero-interfaced Ru/RuO2 support (referred to as Pt-Ru/RuO2), which features a low HER overpotential, an excellent stability and a distinctly enhanced cost-based activity compared to commercial Pt/C and Ru/C in 1 M KOH. Advanced physico-chemical characterizations disclose that the sluggish water dissociation is accelerated by RuO2 while Pt SAs and the metallic Ru facilitate the subsequent H* combination. Theoretical calculations correlate with the experimental findings. Furthermore, Pt-Ru/RuO2 only requires 1.90 V to reach 1 A cm-2 and delivers a high price activity in the anion exchange membrane water electrolyzer, outperforming the benchmark Pt/C. This research offers a feasible guidance for developing the noble metal-based catalysts with high performance and low cost toward practical H2 production.

13.
Nano Lett ; 24(4): 1205-1213, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38214250

RESUMEN

Amorphous nanomaterials have drawn extensive attention owing to their unique features, while amorphization on noble metal nanomaterials still remains formidably challenging. Herein, we demonstrate a universal strategy to synthesize amorphous Pd-based nanomaterials from unary to quinary metals through the introduction of phosphorus (P). The amorphous Pd-based nanoparticles (NPs) exhibit generally promoted oxygen reduction reaction (ORR) activity and durability compared with their crystalline counterparts. Significantly, the quinary P-PdCuNiInSn NPs, benefiting from the amorphous structure and multimetallic component effect, exhibit mass activities as high as 1.04 A mgPd-1 and negligible activity decays of 1.8% among the stability tests, which are much better than values for original Pd NPs (0.134 A mgPd-1 and 28.4%). Experimental and theoretical analyses collectively reveal that the synergy of P-induced amorphization and the expansion of metallic components can considerably lower the free energy changes in the rate-determined step, thereby explaining the positive correlation with the catalytic activity.

14.
Nat Commun ; 15(1): 472, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212300

RESUMEN

Reversible proton ceramic electrochemical cells are promising solid-state ion devices for efficient power generation and energy storage, but necessitate effective air electrodes to accelerate the commercial application. Here, we construct a triple-conducting hybrid electrode through a stoichiometry tuning strategy, composed of a cubic phase Ba0.5Sr0.5Co0.8Fe0.2O3-δ and a hexagonal phase Ba4Sr4(Co0.8Fe0.2)4O16-δ. Unlike the common method of creating self-assembled hybrids by breaking through material tolerance limits, the strategy of adjusting the stoichiometric ratio of the A-site/B-site not only achieves strong interactions between hybrid phases, but also can efficiently modifies the phase contents. When operate as an air electrode for reversible proton ceramic electrochemical cell, the hybrid electrode with unique dual-phase synergy shows excellent electrochemical performance with a current density of 3.73 A cm-2 @ 1.3 V in electrolysis mode and a peak power density of 1.99 W cm-2 in fuel cell mode at 650 °C.

15.
Inorg Chem ; 63(5): 2431-2442, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38258796

RESUMEN

The coupled NO-vibrational peaks [IR νNO 1775 s, 1716 vs, 1668 vs cm-1 (THF)] between two adjacent [Fe(NO)2] groups implicate the electron delocalization nature of the singly O-phenoxide-bridged dinuclear dinitrosyliron complex (DNIC) [Fe(NO)2(µ-ON2Me)Fe(NO)2] (1). Electronic interplay between [Fe(NO)2] units and [ON2Me]- ligand in DNIC 1 rationalizes that "hard" O-phenoxide moiety polarizes iron center(s) of [Fe(NO)2] unit(s) to enforce a "constrained" π-conjugation system acting as an electron reservoir to bestow the spin-frustrated {Fe(NO)2}9-{Fe(NO)2}9-[·ON2Me]2- electron configuration (Stotal = 1/2). This system plays a crucial role in facilitating the ligand-based redox interconversion, working in harmony to control the storage and redox-triggered transport of the [Fe(NO)2]10 unit, while preserving the {Fe(NO)2}9 core in DNICs {Fe(NO)2}9-[·ON2Me]2- [K-18-crown-6-ether)][(ON2Me)Fe(NO)2] (2) and {Fe(NO)2}9-[·ON2Me] [(ON2Me)Fe(NO)2][PF6] (3). Electrochemical studies suggest that the redox interconversion among [{Fe(NO)2}9-[·ON2Me]2-] DNIC 3 ↔ [{Fe(NO)2}9-[ON2Me]-] ↔ [{Fe(NO)2}9-[·ON2Me]] DNIC 2 are kinetically feasible, corroborated by the redox shuttle between O-bridged dimerized [(µ-ONMe)2Fe2(NO)4] (4) and [K-18-crown-6-ether)][(ONMe)Fe(NO)2] (5). In parallel with this finding, the electronic structures of [{Fe(NO)2}9-{Fe(NO)2}9-[·ON2Me]2-] DNIC 1, [{Fe(NO)2}9-[·ON2Me]2-] DNIC 2, [{Fe(NO)2}9-[·ON2Me]] DNIC 3, [{Fe(NO)2}9-[ONMe]-]2 DNIC 4, and [{Fe(NO)2}9-[·ONMe]2-] DNIC 5 are evidenced by EPR, SQUID, and Fe K-edge pre-edge analyses, respectively.

16.
Adv Mater ; 36(18): e2312140, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38241656

RESUMEN

Noble metals have been widely used in catalysis, however, the scarcity and high cost of noble metal motivate researchers to balance the atomic efficiency and atomic density, which is formidably challenging. This article proposes a robust strategy for fabricating 3D amorphous noble metal-based oxides with simultaneous enhancement on atomic efficiency and density with the assistance of atomic channels, where the atomic utilization increases from 18.2% to 59.4%. The unique properties of amorphous bimetallic oxides and formation of atomic channels have been evidenced by detailed experimental characterizations and theoretical simulations. Moreover, the universality of the current strategy is validated by other binary oxides. When Cu2IrOx with atomic channels (Cu2IrOx-AE) is used as catalyst for oxygen evolution reaction (OER), the mass activity and turnover frequency value of Cu2IrOx-AE are 1-2 orders of magnitude higher than CuO/IrO2 and Cu2IrOx without atomic channels, largely outperforming the reported OER catalysts. Theoretical calculations reveal that the formation of atomic channels leads to various Ir sites, on which the proton of adsorbed *OH can transfer to adjacent O atoms of [IrO6]. This work may attract immediate interest of researchers in material science, chemistry, catalysis, and beyond.

17.
ACS Nano ; 18(2): 1611-1620, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38166379

RESUMEN

Single-atom catalysts, known for their high activity, have garnered significant interest. Currently, single-atom catalysts were prepared mainly on 2D substrates with random distribution. Here, we report a strategy for preparing arrayed single Pt (Pt1) atoms, which are templated through coordination with phosphotungstic acids (PTA) intercalated inside hexagonally packed silicate nanochannels for a high single Pt-atom loading of ca. 3.0 wt %. X-ray absorption spectroscopy, high-angle annular dark-field scanning transmission electron microscopy, and energy-dispersive X-ray spectroscopy, in conjunction with the density-functional theory calculation, collectively indicate that the Pt single atoms are stabilized via a four-oxygen coordination on the PTA within the nanochannels' inner walls. The critical reduction in the Pt-adsorption energy to nearly the cohesive energy of Pt clustering is attributed to the interaction between PTA and the silicate substrate. Consequently, the transition from single-atom dispersion to clustering of Pt atoms can be controlled by adjusting the number density of PTA intercalated within the silicate nanochannels, specifically when the number ratio of Pt atoms to PTA changes from 3.7 to 18. The 3D organized Pt1-PTA pairs, facilitated by the arrayed silicate nanochannels, demonstrate high and stable efficiency with a hydrogen production rate of ca. 300 mmol/h/gPt─approximately twice that of the best-reported Pt efficiency in polyoxometalate-based photocatalytic systems.

18.
Adv Mater ; 36(7): e2308839, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37906727

RESUMEN

Highly selective semihydrogenation of alkynes to alkenes is a highly important reaction for catalytic industry. Developing non-noble metal based catalysts with platinum group metal-like activity and selectivity is extremely crucial yet challenging. Metastable phase catalysts provide a potential candidate to realize high activity, yet the control of selectivity remains an open question. Here, this work first reports a metastable phase core-shell: face-centered cubic (fcc) phase Ag (10 at%) core-metastable hexagonal closest packed (hcp) phase Ni (90 at%) shell catalyst, which represents high conversion rate, high selectivity, and remarkable universality for the semihydrogenation of phenylacetylene and its derivatives. More impressively, a turnover frequency (TOF) value of 8241.8 h-1 is achieved, much higher than those of stable phase catalysts and reported platinum group metal based catalysts. Mechanistic investigation reveals that the surface of hcp Ni becomes more oxidized due to electron transfer from hcp Ni shell to fcc Ag core, which decreases the adsorption capacity of styrene on the metastable phase Ni surface, thus preventing full hydrogenation. This work has gained crucial research significance for the design of high performance metastable phase catalysts.

19.
Inorg Chem ; 63(1): 784-794, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38153269

RESUMEN

Nanosized zerovalent iron (NZVI) Fe@Fe3O4 with a core-shell structure derived from photocatalytic MeOH aqueous solution of dinitrosyl iron complex (DNIC) [(N3MDA)Fe(NO)2] (N3MDA = N,N-dimethyl-2-(((1-methyl-1H-imidazole-2-yl)methylene)amino)ethane-1-amine) (1-N3MDA), eosin Y, and triethylamine (TEA) is demonstrated. The NZVI Fe@Fe3O4 core shows a high percentage of zerovalent iron (Fe0 %) and is stabilized by a hydrophobic organic support formed through the photodegradation of eosin Y hybridized with the N3MDA ligand. In addition to its well-known reductive properties in wastewater treatment and groundwater remediation, NZVI demonstrates the ability to form heterostructures when it interacts with metal ions. In this research, Co2+ is employed as a model contaminant and reacted with NZVI Fe@Fe3O4 to result in the formation of a distinct Fe-Co heterostructure, cracked NZVI (CNZVI). The slight difference in the standard redox potentials between Fe2+ and Co2+, the magnetic properties of Co2+, and the absence of surface hydroxides of Fe@Fe3O4 enable NZVI to mildly reduce Co2+ and facilitate Co2+ penetration into the iron core. Taking advantage of the well-dispersed nature of CNZVI on an organic support, the reduction in particle size due to Co2+ penetration, and Fe-Co synergism, CNZVI is employed as a catalyst in the alkaline oxygen evolution reaction (OER). Remarkably, CNZVI exhibits a highly efficient OER performance, surpassing the benchmark IrO2 catalyst. These findings show the potential of using NZVI as a template for synthesizing highly efficient OER catalysts. Moreover, the study demonstrates the possibility of repurposing waste materials from water treatment as valuable resources for catalytic energy conversion, particularly in water oxidation processes.

20.
Small ; 20(22): e2310036, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38126916

RESUMEN

Strain effect in the structurally defective materials can contribute to the catalysis optimization. However, it is challenging to achieve the performance improvement by strain modulation with the help of geometrical structure because strain is spatially dependent. Here, a new class of compressively strained platinum-iridium-metal zigzag-like nanowires (PtIrM ZNWs, M = nickel (Ni), cobalt (Co), iron (Fe), zinc (Zn) and gallium (Ga)) is reported as the efficient alkaline hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR) catalysts. Particularly, the optimized PtIrNi ZNWs with 3% compressive strain (cs-PtIrNi ZNWs) can achieve the highest HER/HOR performances among all the catalysts investigate. Their HOR mass and specific activities are 3.2/14.4 and 2.6/32.7 times larger than those of PtIrNi NWs and commercial Pt/C, respectively. Simultaneously, they can exhibit the superior stability and high CO resistance for HOR. Further, experimental and theoretical studies collectively reveal that the compressive strain in cs-PtIrNi ZNWs effectively weakens the adsorption of hydroxyl intermediate and modulates the electronic structure, resulting in the weakened hydrogen binding energy (HBE) and moderate hydroxide binding energy (OHBE), beneficial for the improvement of HOR performance. This work highlights the importance of strain tuning in enhancing Pt-based nanomaterials for hydrogen catalysis and beyond.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA