Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Life Sci Alliance ; 5(11)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36114003

RESUMEN

Solute carrier (SLC) transporters control fluxes of nutrients and metabolites across membranes and thereby represent a critical interface between the microenvironment and cellular and subcellular metabolism. Because of substantial functional overlap, the interplay and relative contributions of SLCs in response to environmental stresses remain poorly elucidated. To infer functional relationships between SLCs and metabolites, we developed a strategy to identify SLCs able to sustain cell viability and proliferation under growth-limiting concentrations of essential nutrients. One-by-one depletion of 13 amino acids required for cell proliferation enabled gain-of-function genetic screens using a SLC-focused CRISPR/Cas9-based transcriptional activation approach to uncover transporters relieving cells from growth-limiting metabolic bottlenecks. Among the transporters identified, we characterized the cationic amino acid transporter SLC7A3 as a gene that, when up-regulated, overcame low availability of arginine and lysine by increasing their uptake, whereas SLC7A5 was able to sustain cellular fitness upon deprivation of several neutral amino acids. Moreover, we identified metabolic compensation mediated by the glutamate/aspartate transporters SLC1A2 and SLC1A3 under glutamine-limiting conditions. Overall, this gain-of-function approach using human cells uncovered functional transporter-nutrient relationships and revealed that transport activity up-regulation may be sufficient to overcome environmental metabolic restrictions.


Asunto(s)
Proteínas de Transporte de Membrana , Nutrientes , Sistemas de Transporte de Aminoácidos Básicos/genética , Aminoácidos/metabolismo , Arginina/metabolismo , Ácido Aspártico/metabolismo , Mutación con Ganancia de Función , Glutamatos/metabolismo , Glutamina/metabolismo , Humanos , Transportador de Aminoácidos Neutros Grandes 1 , Lisina/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Nutrientes/metabolismo
2.
Nature ; 581(7808): 316-322, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32433612

RESUMEN

Toll-like receptors (TLRs) have a crucial role in the recognition of pathogens and initiation of immune responses1-3. Here we show that a previously uncharacterized protein encoded by CXorf21-a gene that is associated with systemic lupus erythematosus4,5-interacts with the endolysosomal transporter SLC15A4, an essential but poorly understood component of the endolysosomal TLR machinery also linked to autoimmune disease4,6-9. Loss of this type-I-interferon-inducible protein, which we refer to as 'TLR adaptor interacting with SLC15A4 on the lysosome' (TASL), abrogated responses to endolysosomal TLR agonists in both primary and transformed human immune cells. Deletion of SLC15A4 or TASL specifically impaired the activation of the IRF pathway without affecting NF-κB and MAPK signalling, which indicates that ligand recognition and TLR engagement in the endolysosome occurred normally. Extensive mutagenesis of TASL demonstrated that its localization and function relies on the interaction with SLC15A4. TASL contains a conserved pLxIS motif (in which p denotes a hydrophilic residue and x denotes any residue) that mediates the recruitment and activation of IRF5. This finding shows that TASL is an innate immune adaptor for TLR7, TLR8 and TLR9 signalling, revealing a clear mechanistic analogy with the IRF3 adaptors STING, MAVS and TRIF10,11. The identification of TASL as the component that links endolysosomal TLRs to the IRF5 transcription factor via SLC15A4 provides a mechanistic explanation for the involvement of these proteins in systemic lupus erythematosus12-14.


Asunto(s)
Factores Reguladores del Interferón/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lisosomas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 8/metabolismo , Receptor Toll-Like 9/metabolismo , Secuencias de Aminoácidos , Animales , Femenino , Humanos , Inmunidad Innata , Interferón Tipo I/inmunología , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Lupus Eritematoso Sistémico/metabolismo , Masculino , Proteínas de Transporte de Membrana/deficiencia , Proteínas de Transporte de Membrana/genética , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Unión Proteica , Transducción de Señal
3.
Nat Chem Biol ; 16(4): 469-478, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32152546

RESUMEN

Solute carriers (SLCs) are the largest family of transmembrane transporters in humans and are major determinants of cellular metabolism. Several SLCs have been shown to be required for the uptake of chemical compounds into cellular systems, but systematic surveys of transporter-drug relationships in human cells are currently lacking. We performed a series of genetic screens in a haploid human cell line against 60 cytotoxic compounds representative of the chemical space populated by approved drugs. By using an SLC-focused CRISPR-Cas9 library, we identified transporters whose absence induced resistance to the drugs tested. This included dependencies involving the transporters SLC11A2/SLC16A1 for artemisinin derivatives and SLC35A2/SLC38A5 for cisplatin. The functional dependence on SLCs observed for a significant proportion of the screened compounds suggests a widespread role for SLCs in the uptake and cellular activity of cytotoxic drugs and provides an experimentally validated set of SLC-drug associations for a number of clinically relevant compounds.


Asunto(s)
Resistencia a Medicamentos/genética , Proteínas Transportadoras de Solutos/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Antineoplásicos , Fenómenos Bioquímicos , Transporte Biológico/genética , Transporte Biológico/fisiología , Sistemas CRISPR-Cas , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Resistencia a Medicamentos/fisiología , Pruebas Genéticas , Humanos , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Transporte de Proteínas/fisiología , Proteínas Transportadoras de Solutos/fisiología , Simportadores/genética , Simportadores/metabolismo
4.
Mol Microbiol ; 114(1): 151-171, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32198949

RESUMEN

Sinorhizobium (Ensifer) meliloti is a model example of a soil alpha-proteobacterium which induces the formation of nitrogen-fixing symbiotic nodules on the legume roots. In contrast to all other rhizobacterial species, S. meliloti contains multiple homologs of nucleobase transporter genes that belong to NAT/NCS2 family (Nucleobase-Ascorbate Transporter/Nucleobase-Cation Symporter-2). We analyzed functionally all (six) relevant homologs of S. meliloti 1,021 using Escherichia coli K-12 as a host and found that five of them are high-affinity transporters for xanthine (SmLL9), uric acid (SmLL8, SmLL9, SmX28), adenine (SmVC3, SmYE1), guanine (SmVC3), or hypoxanthine (SmVC3). Detailed analysis of substrate profiles showed that two of these transporters display enlarged specificity (SmLL9, SmVC3). SmLL9 is closely related in sequence with the xanthine-specific XanQ of E. coli. We subjected SmLL9 to rationally designed site-directed mutagenesis and found that the role of key binding-site residues of XanQ is conserved in SmLL9, whereas a single amino-acid change (S93N) converts the xanthine/uric-acid transporter SmLL9 to a xanthine-preferring variant, due to disruption of an essential hydrogen bond with the C8 oxygen of uric acid. The results highlight the presence of several different purine nucleobase transporters in S. meliloti and imply that the purine transport might be important in the nodule symbiosis involving S. meliloti.


Asunto(s)
Transporte Biológico Activo/genética , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Simportadores/genética , Simportadores/metabolismo , Adenina/metabolismo , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Guanina/metabolismo , Hipoxantina/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Nodulación de la Raíz de la Planta/fisiología , Rizosfera , Nódulos de las Raíces de las Plantas/microbiología , Ácido Úrico/metabolismo , Xantina/metabolismo
5.
Biochim Biophys Acta Biomembr ; 1861(9): 1546-1557, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31283918

RESUMEN

Recombinant expression systems for mammalian membrane transport proteins are often limited by insufficient yields to support structural studies, inadequate post-translational processing and problems related with improper membrane targeting or cytotoxicity. Use of alternative expression systems and optimization of expression/purification protocols are constantly needed. In this work, we explore the applicability of the laboratory strain LEXSY of the ancient eukaryotic microorganism Leishmania tarentolae as a new expression system for mammalian nucleobase permeases of the NAT/NCS2 (Nucleobase-Ascorbate Transporter/Nucleobase-Cation Symporter-2) family. We achieved the heterologous expression of the purine-pyrimidine permease rSNBT1 from Rattus norvegicus (tagged at C-terminus with a red fluorescent protein), as confirmed by confocal microscopy and biochemical analysis of the subcellular fractions enriched in membrane proteins. The cDNA of rSNBT1 has been subcloned in a pLEXSY-sat-mrfp1vector and used to generate transgenic L. tarentolae-rsnbt1-mrfp1 strains carrying the pLEXSY-sat-rsnbt1-mrfp1 plasmid either episomally or integrated in the chromosomal DNA. The chimeric transporter rSNBT1-mRFP1 is targeted to the ER and the plasma membrane of the L. tarentolae promastigotes. The transgenic strains are capable of transporting nucleobases that are substrates of rSNBT1 but also of the endogenous L. tarentolae nucleoside/nucleobase transporters. A dipyridamole-resistant Na+-dependent fraction of uptake is attributed to the exogenously expressed rSNBT1.


Asunto(s)
Leishmania/genética , Proteínas de Transporte de Nucleobases/genética , Ingeniería de Proteínas/métodos , Animales , Animales Modificados Genéticamente , Transporte Biológico/genética , Transporte Iónico , Leishmania/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Nucleobases/metabolismo , Purinas , Pirimidinas , Ratas , Sodio/metabolismo , Simportadores/metabolismo
6.
Mol Microbiol ; 108(2): 204-219, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29437264

RESUMEN

The uracil permease UraA of Escherichia coli is a structurally known prototype for the ubiquitous Nucleobase-Ascorbate Transporter (NAT) or Nucleobase-Cation Symporter-2 (NCS2) family and represents a well-defined subgroup of bacterial homologs that remain functionally unstudied. Here, we analyze four of these homologs, including RutG of E. coli which shares 35% identity with UraA and is encoded in the catabolic rut (pyrimidine utilization) operon. Using amplified expression in E. coli K-12, we show that RutG is a high-affinity permease for uracil, thymine and, at low efficiency, xanthine and recognizes also 5-fluorouracil and oxypurinol. In contrast, UraA and the homologs from Acinetobacter calcoaceticus and Aeromonas veronii are permeases specific for uracil and 5-fluorouracil. Molecular docking indicates that thymine is hindered from binding to UraA by a highly conserved Phe residue which is absent in RutG. Site-directed replacement of this Phe with Ala in the three uracil-specific homologs allows high-affinity recognition and/or transport of thymine, emulating the RutG profile. Furthermore, all RutG orthologs from enterobacteria retain an Ala at this position, implying that they can use both uracil and thymine and, possibly, xanthine as substrates and provide the bacterial cell with a range of catabolizable nucleobases.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Pirimidinas/metabolismo , Uracilo/metabolismo , Bacterias/clasificación , Bacterias/enzimología , Bacterias/genética , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Transporte de Membrana/genética , Simulación del Acoplamiento Molecular , Familia de Multigenes , Operón , Filogenia , Pirimidinas/química , Especificidad por Sustrato , Timina/química , Timina/metabolismo , Uracilo/química
7.
J Biol Chem ; 288(52): 36827-40, 2013 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-24214977

RESUMEN

The evolutionarily broad family nucleobase-cation symporter-2 (NCS2) encompasses transporters that are conserved in binding site architecture but diverse in substrate selectivity. Putative purine transporters of this family fall into one of two homology clusters: COG2233, represented by well studied xanthine and/or uric acid permeases, and COG2252, consisting of transporters for adenine, guanine, and/or hypoxanthine that remain unknown with respect to structure-function relationships. We analyzed the COG2252 genes of Escherichia coli K-12 with homology modeling, functional overexpression, and mutagenesis and showed that they encode high affinity permeases for the uptake of adenine (PurP and YicO) or guanine and hypoxanthine (YjcD and YgfQ). The two pairs of paralogs differ clearly in their substrate and ligand preferences. Of 25 putative inhibitors tested, PurP and YicO recognize with low micromolar affinity N(6)-benzoyladenine, 2,6-diaminopurine, and purine, whereas YjcD and YgfQ recognize 1-methylguanine, 8-azaguanine, 6-thioguanine, and 6-mercaptopurine and do not recognize any of the PurP ligands. Furthermore, the permeases PurP and YjcD were subjected to site-directed mutagenesis at highly conserved sites of transmembrane segments 1, 3, 8, 9, and 10, which have been studied also in COG2233 homologs. Residues irreplaceable for uptake activity or crucial for substrate selectivity were found at positions occupied by similar role amino acids in the Escherichia coli xanthine- and uric acid-transporting homologs (XanQ and UacT, respectively) and predicted to be at or around the binding site. Our results support the contention that the distantly related transporters of COG2233 and COG2252 use topologically similar side chain determinants to dictate their function and the distinct purine selectivity profiles.


Asunto(s)
Escherichia coli K12 , Proteínas de Escherichia coli , Proteínas de Transporte de Membrana , Modelos Moleculares , Proteínas de Transporte de Nucleósidos , Escherichia coli K12/química , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ligandos , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mutagénesis Sitio-Dirigida , Proteínas de Transporte de Nucleósidos/antagonistas & inhibidores , Proteínas de Transporte de Nucleósidos/química , Proteínas de Transporte de Nucleósidos/genética , Proteínas de Transporte de Nucleósidos/metabolismo , Estructura Terciaria de Proteína , Homología Estructural de Proteína , Relación Estructura-Actividad
8.
J Biol Chem ; 287(19): 15684-95, 2012 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-22437829

RESUMEN

The ubiquitous nucleobase-ascorbate transporter (NAT/NCS2) family includes more than 2,000 members, but only 15 have been characterized experimentally. Escherichia coli has 10 members, of which the uracil permease UraA and the xanthine permeases XanQ and XanP are functionally known. Of the remaining members, YgfU is closely related in sequence and genomic locus with XanQ. We analyzed YgfU and showed that it is a proton-gradient dependent, low-affinity (K(m) 0.5 mM), and high-capacity transporter for uric acid. It also shows a low capacity for transport of xanthine at 37 °C but not at 25 °C. Based on the set of positions delineated as important from our previous Cys-scanning analysis of permease XanQ, we subjected YgfU to rationally designed site-directed mutagenesis. The results show that the conserved His-37 (TM1), Glu-270 (TM8), Asp-298 (TM9), and Gln-318 and Asn-319 (TM10) are functionally irreplaceable, and Thr-100 (TM3) is essential for the uric acid selectivity because its replacement with Ala allows efficient uptake of xanthine. The key role of these residues is corroborated by the conservation pattern and homology modeling on the recently described x-ray structure of permease UraA. In addition, site-specific replacements at TM8 (S271A, M274D, V282S) impair expression in the membrane, and V320N (TM10) inactivates the permease, whereas R327G (TM10) or S426N (TM14) reduces the affinity for uric acid (4-fold increased K(m)). Our study shows that comprehensive analysis of structure-function relationships in a newly characterized transporter can be accomplished with relatively few site-directed replacements, based on the knowledge available from Cys-scanning mutagenesis of a prototypic homolog.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Nucleobases/metabolismo , Ácido Úrico/metabolismo , Xantina/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Secuencia de Bases , Transporte Biológico , Western Blotting , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Proteínas de Transporte de Nucleobases/química , Proteínas de Transporte de Nucleobases/genética , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido
9.
J Biol Chem ; 283(20): 13666-78, 2008 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-18359771

RESUMEN

Transmembrane helix XII of UapA, the major fungal homolog of the nucleobase-ascorbate transporter (NAT/NCS2) family, has been proposed to contain an aromatic residue acting as a purine-selectivity filter, distinct from the binding site. To analyze the role of helix XII more systematically, we employed Cys-scanning mutagenesis of the Escherichia coli xanthine-specific homolog YgfO. Using a functional mutant devoid of Cys residues (C-less), each amino acid residue in sequence 419ILPASIYVLVENPICAGGLTAILLNIILPGGY450 (the putative helix XII is underlined) was replaced individually with Cys. Of the 32 single-Cys mutants, 25 accumulate xanthine to 80-130% of the steady state observed with C-less YgfO, six (P421C, S423C, I424C, Y425C, L427C, G436C) accumulate to low levels (15-40%), and I432C is inactive. Immunoblot analysis shows that P421C and I432C display low expression in the membrane. Extensive mutagenesis reveals that replacement of Ile-432 with equally or more bulky side chains abolishes active transport without affecting expression, whereas replacement with smaller side chains allows activity but impairs affinity for the analogues 1-methyl and 6-thioxanthine. Only three of the single-Cys mutants of helix XII (V426C, N430C, and N443C) are sensitive to inactivation by N-ethylmaleimide. N430C is highly sensitive, with an IC50 of 10 microm, and is completely protected against inactivation in the presence of 2-thioxanthine, a high affinity substrate analogue. Other xanthine analogues are poorly bound by N430C, whereas replacement of Asn-430 with Thr inactivates the permease. The findings suggest that Ile-432 and Asn-430 of helix XII are crucial for purine uptake and affinity, and Asn-430 is probably at the vicinity of the binding site.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Nucleobases/química , Secuencia de Aminoácidos , Asparagina/química , Sitios de Unión , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Etilmaleimida/farmacología , Regulación Bacteriana de la Expresión Génica , Concentración 50 Inhibidora , Isoleucina/química , Cinética , Modelos Biológicos , Datos de Secuencia Molecular , Proteínas de Transporte de Nucleobases/genética , Conformación Proteica , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA