Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Phys Chem A ; 126(42): 7737-7749, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36242563

RESUMEN

Partially and fully fluorinated olefins are a class of compounds with relatively short atmospheric lifetimes and low 100-year global warming potentials, compared to their saturated predecessors, which are used or considered as refrigerants, propellants, solvents, and other end-uses. The cyclic unsaturated compounds c-C5F8 and c-C5HF7 are currently under consideration as etching agents for the semiconductor industry. In this study, we expand on our previous work on the reaction of the OH radical with c-C5F8 and c-C5HF7 and report the rate coefficients, k, for the gas-phase reaction of the Cl atom with c-C5F8 and c-C5HF7 over a range of temperature (245-367 K) and pressure (100-200 Torr of He or N2 and 0 to 4.8 Torr O2) using a pulsed laser photolysis-resonance fluorescence (PLP-RF) technique. In addition, a relative rate (RR) technique, employing multiple reference compounds, was used to study the Cl atom reactions at 296 K, 100 and 630 Torr (N2 or air) total pressure. Reaction rate coefficients, k1, of the Cl atom reaction with c-C5F8 were found to be independent of pressure, over the pressure range used in this work, with k1(296 K), derived as an average of results from the PLP-RF and RR techniques being (1.07 ± 0.02) × 10-12 cm3 molecule-1 s-1 and k1(T) = (7.76 ± 0.73) × 10-13 × (exp[(98 ± 26)/T]) cm3 molecule-1 s-1, where the quoted error limits represent the 2σ data precision. Rate coefficients, k2, for the Cl atom + c-C5HF7 reaction were measured to be k2(296 K) = (4.61 ± 0.10) × 10-12 cm3 molecule-1 s-1 and k2(T) = (7.42 ± 0.89) × 10-13 × (exp[(540 ± 32)/T]) cm3 molecule-1 s-1. The Cl atom temporal profiles, observed with the PLP-RF technique, indicate that the Cl atom with c-C5F8 and c-C5HF7 reactions lead to adduct formation. The equilibrium constants for adduct formation were derived in this work, and a second-law analysis was used to obtain ΔH and ΔS values of -18.5 ± 0.4 kcal mol-1, -30.9 ± 1.2 cal K-1 mol-1, and -13.9 ± 0.5 kcal mol-1, -27.6 ± 1.1 cal K-1 mol-1 for the c-C5F8 and c-C5HF7 reactions, respectively. The Cl-initiated degradation of c-C5F8 and c-C5HF7 in the presence of O2 was studied and stable products were identified via infrared spectroscopy using experimental or theoretically derived spectra from our previous OH reaction work. For c-C5F8, FC(O)CF2CF2CF2C(O)F and FC(O)C(O)F were observed with molar yields of 0.80 and 0.10, respectively. For c-C5HF7, we observed the formation of HC(O)CF2CF2CF2C(O)F and HC(O)C(O)F with a combined molar yield of 0.72. Carbonyl difluoride, F2CO, was also a major product in the decomposition of c-C5F8 and c-C5HF7. The oxidation mechanism of the Cl-initiated degradation of c-C5F8 and c-C5HF7 is discussed. Based on the combined findings from this and our previous work, the atmospheric implications from the use of c-C5F8 and c-C5HF7 are presented.

2.
ACS Omega ; 6(28): 18123-18134, 2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34308045

RESUMEN

d 9-Butanol or 1-butan-d 9-ol (D9B) is often used as an OH radical tracer in atmospheric chemistry studies to determine OH exposure, a useful universal metric that describes the extent of OH radical oxidation chemistry. Despite its frequent application, there is only one study that reports the rate coefficient of D9B with OH radicals, k 1(295 K), which limits its usefulness as an OH tracer for studying processes at temperatures lower or higher than room temperature. In this study, two complementary experimental techniques were used to measure the rate coefficient of D9B with OH radicals, k 1(T), at temperatures between 240 and 750 K and at pressures within 2-760 Torr. A thermally regulated atmospheric simulation chamber was used to determine k 1(T) in the temperature range of 263-353 K and at atmospheric pressure using the relative rate method. A low-pressure (2-10 Torr) discharge flow tube reactor coupled with a mass spectrometer was used to measure k 1(T) at temperatures within 240-750 K, using both the absolute and relative rate methods. The agreement between the two experimental aproaches followed in this study was very good, within 6%, in the overlapping temperature range, and k 1(295 ± 3 K) was 3.42 ± 0.26 × 10-12 cm3 molecule-1 s-1, where the quoted error is the overall uncertainty of the measurements. The temperature dependence of the rate coefficient is well described by the modified Arrhenius expression, k 1 = (1.57 ± 0.88) × 10-14 × (T/293)4.60±0.4 × exp(1606 ± 164/T) cm3 molecule-1 s-1 in the range of 240-750 K, where the quoted error represents the 2σ standard deviation of the fit. The results of the current study enable an accurate estimation of OH exposure in atmospheric simulation experiments and expand the applicability of D9B as an OH radical tracer at temperatures other than room temperature.

3.
J Phys Chem A ; 125(4): 1050-1061, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33481598

RESUMEN

c-C5HF7 (1H-heptafluorocyclopentene) and c-C5F8 (perfluorocyclopentene) are potent greenhouse gases presently used as replacement compounds in Si etching. A thorough understanding of their potential impact on climate and air quality necessitates studies of their atmospheric reactivity, radiative properties, and atmospheric degradation pathways. The predominant atmospheric removal process for these compounds is expected to be via reaction with the OH radical. In this study, rate coefficients, k, for the gas-phase reaction of the OH radical with c-C5HF7 and c-C5F8 were measured over a range of temperatures (242-370 K) and pressures (50-100 Torr, He) using a pulsed laser photolysis-laser-induced fluorescence technique. In addition, a complementary relative rate technique, employing multiple reference compounds, was used to study the reactions between 273 and 372 K at 100 Torr (He) total pressure. Reaction rate coefficients were found to be independent of pressure over this range of conditions with k1(296 K) = (4.59 ± 0.10) × 10-14 cm3 molecule-1 s-1 and k1(T) = (4.00 ± 0.40) × 10-13 exp(-(631 ± 30)/T) cm3 molecule-1 s-1 for c-C5HF7 and k2(296 K) = (4.90 ± 0.14) × 10-14 cm3 molecule-1 s-1 and k2(T) = (3.59 ± 0.4) × 10-13 exp(-(591 ± 25)/T) cm3 molecule-1 s-1 for c-C5F8. Stable end-products were measured following the OH radical-initiated degradation of c-C5HF7 and c-C5F8 in the presence of O2. F(O)CCF2CF2CF2CH(O), CF2O, and CO2 were observed as the major end-products in the oxidation of c-C5HF7 with molar yields of 0.64, 1.27, and 0.53, respectively. For c-C5F8, F(O)CCF2CF2CF2CF(O), CF2O, and CO2 were observed with molar yields of 0.66, 0.63, and 0.43, respectively. The total carbon mass balance in both systems was 1.0 ± 0.15. The high yield of a C5-dicarbonyl end-product is consistent with a ring opening at the carbon-carbon double bond site for both c-C5HF7 and c-C5F8. A comparison of the present kinetic and degradation product results with previously published studies is presented. A rate coefficient upper limit for the gas-phase reaction of O3 with c-C5HF7 and c-C5F8 of 1 × 10-21 cm3 molecule-1 s-1 was measured as part of this work. Atmospheric lifetimes for c-C5HF7 and c-C5F8 are estimated to be 252 and 236 days, respectively. Infrared absorption spectra of c-C5HF7 and c-C5F8 were also measured and found to agree, to within 5%, with results from previous studies. The well-mixed and lifetime adjusted radiative efficiencies (RE, W m-2 ppb-1) and 100 year time horizon global warming potential (GWP) for c-C5HF7 are 0.35, 0.24, and 46.7 and for c-C5F8 are 0.38, 0.25, and 46.2, respectively.

4.
Proc Natl Acad Sci U S A ; 117(52): 33028-33033, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33318218

RESUMEN

Oxidized organic aerosol (OOA) is a major component of ambient particulate matter, substantially impacting climate, human health, and ecosystems. OOA is readily produced in the presence of sunlight, and requires days of photooxidation to reach the levels observed in the atmosphere. High concentrations of OOA are thus expected in the summer; however, our current mechanistic understanding fails to explain elevated OOA during wintertime periods of low photochemical activity that coincide with periods of intense biomass burning. As a result, atmospheric models underpredict OOA concentrations by a factor of 3 to 5. Here we show that fresh emissions from biomass burning exposed to NO2 and O3 (precursors to the NO3 radical) rapidly form OOA in the laboratory over a few hours and without any sunlight. The extent of oxidation is sensitive to relative humidity. The resulting OOA chemical composition is consistent with the observed OOA in field studies in major urban areas. Additionally, this dark chemical processing leads to significant enhancements in secondary nitrate aerosol, of which 50 to 60% is estimated to be organic. Simulations that include this understanding of dark chemical processing show that over 70% of organic aerosol from biomass burning is substantially influenced by dark oxidation. This rapid and extensive dark oxidation elevates the importance of nocturnal chemistry and biomass burning as a global source of OOA.


Asunto(s)
Contaminantes Atmosféricos/química , Contaminación del Aire/estadística & datos numéricos , Biomasa , Material Particulado/química , Aerosoles/química , Ciudades , Modelos Teóricos , Dióxido de Nitrógeno/análisis , Dióxido de Nitrógeno/química , Oxidación-Reducción , Oxígeno/química
5.
J Phys Chem A ; 122(17): 4252-4264, 2018 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-29624393

RESUMEN

Permethylsiloxanes are emitted into the atmosphere during production and use as personal care products, lubricants, and cleaning agents. The predominate atmospheric loss process for permethylsiloxanes is expected to be via gas-phase reaction with the OH radical. In this study, rate coefficients, k(T), for the OH radical gas-phase reaction with the two simplest linear and cyclic permethylsiloxanes were measured using a pulsed laser photolysis-laser induced fluorescence technique over the temperature range of 240-370 K and a relative rate method at 294 K: hexamethyldisiloxane ((CH3)3SiOSi(CH3)3, L2), k1; octamethyltrisiloxane ([(CH3)3SiO]2Si(CH3)2, L3), k2; hexamethylcyclotrisiloxane ([-Si(CH3)2O-]3, D3), k3; and octamethylcyclotetrasiloxane ([-Si(CH3)2O-]4, D4), k4. The obtained k(294 K) values and temperature-dependence expressions for the 240-370 K temperature range are (cm3 molecule-1 s-1, 2σ absolute uncertainties): k1(294 K) = (1.28 ± 0.08) × 10-12, k1( T) = (1.87 ± 0.18) × 10-11 exp(-(791 ± 27)/ T); k2(294 K) = (1.72 ± 0.10) × 10-12, k2( T) = 1.96 × 10-13 (T/298)4.34 exp(657/ T); k3(294 K) = (0.82 ± 0.05) × 10-12, k3( T) = (1.29 ± 0.19) × 10-11 exp(-(805 ± 43)/ T); and k4(294 K) = (1.12 ± 0.10) × 10-12, k4( T) = (1.80 ± 0.26) × 10-11 exp(-(816 ± 43)/ T). The cyclic molecules were found to be less reactive than the analogous linear molecule with the same number of -CH3 groups, while the linear and cyclic permethylsiloxane reactivity both increase with the increasing number of CH3- groups. The present results are compared with previous rate coefficient determinations where available. The permethylsiloxanes included in this study are atmospherically short-lived compounds with estimated atmospheric lifetimes of 11, 8, 17, and 13 days, respectively.

6.
Front Vet Sci ; 5: 329, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30687721

RESUMEN

Features of intensive farming can seriously threaten pig homeostasis, well-being and productivity. Disease tolerance of an organism is the adaptive ability in preserving homeostasis and at the same time limiting the detrimental impact that infection can inflict on its health and performance without affecting pathogen burden per se. While disease resistance (DRs) can be assessed measuring appropriately the pathogen burden within the host, the tolerance cannot be quantified easily. Indeed, it requires the assessment of the changes in performance as well as the changes in pathogen burden. In this paper, special attention is given to criteria required to standardize methodologies for assessing disease tolerance (DT) in respect of infectious diseases in pigs. The concept is applied to different areas of expertise and specific examples are given. The basic physiological mechanisms of DT are reviewed. Disease tolerance pathways, genetics of the tolerance-related traits, stress and disease tolerance, and role of metabolic stress in DT are described. In addition, methodologies based on monitoring of growth and reproductive performance, welfare, emotional affective states, sickness behavior for assessment of disease tolerance, and methodologies based on the relationship between environmental challenges and disease tolerance are considered. Automated Precision Livestock Farming technologies available for monitoring performance, health and welfare-related measures in pig farms, and their limitations regarding DT in pigs are also presented. Since defining standardized methodologies for assessing DT is a serious challenge for biologists, animal scientists and veterinarians, this work should contribute to improvement of health, welfare and production in pigs.

7.
PLoS One ; 12(1): e0169511, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28046072

RESUMEN

An experimental study was conducted to examine the combined effects of adding a dietary protease, reducing the levels of soybean meal (SBM) and introducing corn gluten meal (CGM) in the ration of a group of broilers reared on a commercial Greek farm. Five hundred forty chicks were divided into three dietary treatments with six replicates of thirty birds each. The first group (Control) was fed a conventional diet based on corn and soybean meal, containing 21% w/w crude protein (CP). The second group (Soy-Prot) was supplied a corn and SBM-based diet containing a lower level of CP (20% w/w) and 200 mg of the protease RONOZYME® Proact per kg of feed. The third group (Gluten-Prot) was fed a diet without soybean-related constituents which was based on corn and CGM and with CP and protease contents identical to those of the diet of the Soy-Prot group. Body weight, feed intake, feed conversion ratio (FCR), intestinal microbiota populations and morphology, meat quality and cost were evaluated. Furthermore, a partial life cycle assessment (LCA) was performed in order to assess the potential environmental performance of the systems defined by these three dietary treatments and identify their environmental hot-spots. The growth performance of the broilers supplied the Soy-Prot diet was similar to the broilers supplied the Control diet. However, the broilers which were fed the Gluten-Prot diet at the end of the trial showed a tendency (P≤0.010) for lower weight gain and feed intake compared to those of the Control diet. When compared to the Control group, lower counts of C. perfringens (P≤0.05) were detected in the ileum and cecum parts, and lower counts of F. necrophorum (P≤0.001) were detected in the cecum part of the birds from the Gluten-Prot group. The evaluation of intestinal morphometry showed that the villus height and crypt depth values were not significantly different (P>0.05) among the experimental groups for the duodenum, jejunum and ileum parts. No significant differences (P>0.05) were observed in the quality of the breast and thigh meat and in the feed cost per kg body weight gain for the total duration of the growth period between the Control and Gluten-Prot broiler groups. The LCA suggested that the ammonia and nitrous oxide emissions due to litter handling constitute the farm level hot-spots for the Acidification and Eutrophication Potentials of the Control and Soy-Prot systems and the Global Warming Potential of the Gluten-Prot system, respectively. The Latin American soybean production and domestic corn production and lignite mining are important off-farm polluting processes for the studied life cycles. The Soy-Prot and Gluten-Prot systems both performed better than the Control system in nine of Environmental Impact Category Indicators assessed, with the respective differences being generally larger for the Gluten-Prot system. The environmental impact estimates are regarded as initial, indicative figures due to their inherent uncertainty. Overall, the results could be considered as positive indications in the effort to sustainably replace the conventional, soybean-dependent control diet in the specific broiler production system.


Asunto(s)
Alimentación Animal , Glútenes/química , Glycine max/química , Microbiota , Péptido Hidrolasas/metabolismo , Zea mays/química , Crianza de Animales Domésticos , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Peso Corporal , Ciego/microbiología , Pollos/crecimiento & desarrollo , Dieta/veterinaria , Proteínas en la Dieta/metabolismo , Grecia , Intestino Delgado/microbiología , Estadios del Ciclo de Vida , Reacción en Cadena de la Polimerasa
8.
J Chem Phys ; 137(16): 164315, 2012 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-23126718

RESUMEN

Oxalyl chloride, (ClCO)(2), has been used as a Cl atom photolytic precursor in numerous laboratory kinetic and photochemical studies. In this study, the UV/vis absorption spectrum of (ClCO)(2) and the Cl atom quantum yields in its photolysis at 193, 248, and 351 nm are reported. The UV∕vis spectrum was measured between 200 and 450 nm at 296 K using diode array spectroscopy in conjunction with an absolute cross section obtained at 213.9 nm. Our results are in agreement with the spectrum reported by Baklanov and Krasnoperov [J. Phys. Chem. A 105, 97-103 (2001)], which was obtained at 11 discrete wavelengths between 193.3 and 390 nm. Cl atom quantum yields, Φ(λ), were measured using pulsed laser photolysis coupled with time resolved atomic resonance fluorescence detection of Cl. The UV photolysis of (ClCO)(2) has been shown in previous studies to occur via an impulsive three-body dissociation mechanism, (COCl)(2) + hv → ClCO* + Cl + CO (2), where the excited ClCO radical, ClCO*, either dissociates or stabilizes ClCO* → Cl + CO (3a), → ClCO (3b). ClCO is thermally unstable at the temperatures (253-298 K) and total pressures (13-128 Torr) used in our experiments ClCO + M → Cl + CO + M (4) leading to the formation of a secondary Cl atom that was resolvable in the Cl atom temporal profiles obtained in the 248 and 351 nm photolysis of (ClCO)(2). Φ(193 nm) was found to be 2.07 ± 0.37 independent of bath gas pressure (25.8-105.7 Torr, N(2)), i.e., the branching ratio for channel 2a or the direct formation of 2Cl + 2CO in the photolysis of (ClCO)(2) is >0.95. At 248 nm, the branching ratio for channel 2a was determined to be 0.79 ± 0.15, while the total Cl atom yield, i.e., following the completion of reaction (4), was found to be 1.98 ± 0.26 independent of bath gas pressure (15-70 Torr, N(2)). Φ(351 nm) was found to be pressure dependent between 7.8 and 122.4 Torr (He, N(2)). The low-pressure limit of the total Cl atom quantum yield, Φ(0)(351 nm), was 2.05 ± 0.24. As part of this work, rate coefficients for the thermal decomposition of ClCO were measured between 253 and 298 K at total pressures between 13 and 128 Torr (He and N(2) bath gases). The N(2) bath gas results were combined with the data reported in Nicovich et al. [J. Chem. Phys. 92, 3539-3544 (1990)] to yield k(4)(T, N(2)) = (4.7 ± 0.7) × 10(-10) exp [-(2987 ± 16)/T] cm(3) molecule(-1) s(-1), while the He bath gas data fit yielded k(4)(T, He) = (2.3 ± 2.1) × 10(-10) exp [-(2886 ± 218)/T] cm(3) molecule(-1) s(-1). The quoted uncertainties are at the 2σ level from the precision of the fit. In addition, the room temperature rate coefficient for the Cl + ClNO reaction was measured in this work to be (1.03 ± 0.10) × 10(-10) cm(3) molecule(-1) s(-1).

9.
J Phys Chem A ; 116(24): 5796-805, 2012 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-21936506

RESUMEN

Recent studies have shown that the UV/vis photolysis of nitryl chloride (ClNO2) can be a major source of reactive chlorine in the troposphere. The present work reports measurements of the ClNO2 absorption spectrum and its temperature dependence between 210 and 296 K over the wavelength range 200­475 nm using diode array spectroscopy. The room temperature spectrum obtained in this work was found to be in good agreement with the results from Ganske et al. (J. Geophys. Res. 1992, 97, 7651) over the wavelength range common to both studies (200­370 nm) but differs systematically from the currently recommended spectrum for use in atmospheric models. The present results lead to a decrease in the calculated atmospheric ClNO2 photolysis rate by 30%. Including the temperature dependence of the ClNO2 spectrum decreases the calculated atmospheric photolysis rate at lower temperatures (higher altitudes) even further. A parametrization of the wavelength and temperature dependence of the ClNO2 spectrum is presented. O(3P) quantum yields, Φ(ClNO2)(O), in the photolysis of ClNO2 at 193 and 248 nm were measured at 296 K using pulsed laser photolysis combined with atomic resonance fluorescence detection of O(3P) atoms. Φ(ClNO2)(O)(λ) was found to be 0.67 ± 0.12 and 0.15 ± 0.03 (2σ error limits, including estimated systematic errors) at 193 and 248 nm, respectively, indicating that multiple dissociation channels are active in the photolysis of ClNO2 at these wavelengths. The Φ(ClNO2)(O)(λ) values obtained in this work are discussed in light of previous ClNO2 photodissociation studies and the differences are discussed.

10.
J Chem Phys ; 134(20): 204310, 2011 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-21639443

RESUMEN

The photochemistry of Cl(2)O (dichlorine monoxide) was studied using measurements of its UV/vis absorption spectrum temperature dependence and the O((3)P) atom quantum yield, Φ(Cl(2)O)(O)(λ), in its photolysis at 193 and 248 nm. The Cl(2)O UV/vis absorption spectrum was measured over the temperature range 201-296 K between 200 and 500 nm using diode array spectroscopy. Cl(2)O absorption cross sections, σ(Cl(2)O)(λ,T), at temperatures <296 K were determined relative to its well established room temperature values. A wavelength and temperature dependent parameterization of the Cl(2)O spectrum using the sum of six Gaussian functions, which empirically represent transitions from the ground (1)A(1) electronic state to excited states, is presented. The Gaussian functions are found to correlate well with published theoretically calculated vertical excitation energies. O((3)P) quantum yields in the photolysis of Cl(2)O at 193 and 248 nm were measured using pulsed laser photolysis combined with atomic resonance fluorescence detection of O((3)P) atoms. O((3)P) quantum yields were measured to be 0.85 ± 0.15 for 193 nm photolysis at 296 K and 0.20 ± 0.03 at 248 nm, which was also found to be independent of temperature (220-352 K) and pressure (17 and 28 Torr, N(2)). The quoted uncertainties are at the 2σ (95% confidence) level and include estimated systematic errors. ClO radical temporal profiles obtained following the photolysis of Cl(2)O at 248 nm, as reported previously in Feierabend et al. [J. Phys. Chem. A 114, 12052, (2010)], were interpreted to establish a <5% upper-limit for the O + Cl(2) photodissociation channel, which indicates that O((3)P) is primarily formed in the three-body, O + 2Cl, photodissociation channel at 248 nm. The analysis also indirectly provided a Cl atom quantum yield of 1.2 ± 0.1 at 248 nm. The results from this work are compared with previous studies where possible.

11.
J Phys Chem A ; 114(45): 12052-61, 2010 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-20979404

RESUMEN

Absolute ClO radical product yields in the gas-phase reactions of O((1)D) with Cl(2), HCl, CCl(4), CHCl(3), CH(2)Cl(2), CH(3)Cl, CFCl(3), CF(2)Cl(2), CF(3)Cl, CHFCl(2), and CHF(2)Cl are reported. Product yields were measured using pulsed-laser photolysis of O(3) to produce O((1)D) in the presence of excess reactant combined with dual wavelength differential cavity ring-down spectroscopic detection of the ClO radical. ClO radical absorption cross sections for the A(2)Π(v = 10) ← X(2)Π(v = 0) transition band head near 280 nm were determined between 200 and 296 K as part of this work. The ClO product yields obtained at room temperature were Cl(2) (0.77 ± 0.10), HCl (0.20 ± 0.04), CCl(4) (0.79 ± 0.04), CHCl(3) (0.77 ± 0.04), CH(2)Cl(2) (0.73 ± 0.04), CH(3)Cl (0.46 ± 0.06), CFCl(3) (0.79 ± 0.04), CF(2)Cl(2) (0.76 ± 0.06), CF(3)Cl (0.82 ± 0.06), CHFCl(2) (0.73 ± 0.05), and CHF(2)Cl (0.56 ± 0.03), where the quoted error limits are 2σ of the measurement precision. ClO product yields in the O((1)D) + Cl(2) and CFCl(3) reactions were found to be independent of temperature between 200 and 296 K, within the precision of the measurements. The absolute ClO yields obtained in this study are compared with previously reported values determined using relative and indirect methods.

12.
Phys Chem Chem Phys ; 12(38): 12101-11, 2010 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-20694250

RESUMEN

Rate coefficients, k, for the gas-phase reaction of the OH radical with (CH(3))(3)COOH (tert-butyl hydroperoxide) were measured as a function of temperature (206-375 K) and pressure (25-200 Torr (He, N(2))). Rate coefficients were measured under pseudo-first-order conditions using pulsed laser photolysis to produce OH and laser induced fluorescence (PLP-LIF) to measure the OH temporal profile. Two independent methods were used to determine the gas-phase infrared cross sections of (CH(3))(3)COOH, absolute pressure and chemical titration, that were used to determine the (CH(3))(3)COOH concentration in the LIF reactor. The temperature dependence of the rate coefficients is described, within the measurement precision, by the Arrhenius expression k(1)(T) = (7.0 ± 1.0) × 10(-13) exp[(485 ± 20)/T] cm(3) molecule(-1) s(-1) where k(1)(296 K) was measured to be (3.58 ± 0.54) × 10(-12) cm(3) molecule(-1) s(-1). The uncertainties are 2σ (95% confidence level) and include estimated systematic errors. UV absorption cross sections of (CH(3))(3)COOH were determined at 185, 214, 228, and 254 nm and over the wavelength range 210-300 nm. The OH quantum yield following the 248 nm pulsed laser photolysis of (CH(3))(3)COOH was measured relative to the OH quantum yields of H(2)O(2) and HNO(3) using PLP-LIF and found to be near unity.


Asunto(s)
Radical Hidroxilo/química , Fotólisis , terc-Butilhidroperóxido/química , Cinética , Presión , Temperatura
13.
J Phys Chem A ; 113(49): 13711-26, 2009 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-19954253

RESUMEN

The UV photolysis of Cl(2)O(2) (dichlorine peroxide) is a key step in the catalytic destruction of polar stratospheric ozone. In this study, the gas-phase UV absorption spectrum of Cl(2)O(2) was measured using diode array spectroscopy and absolute cross sections, sigma, are reported for the wavelength range 200-420 nm. Pulsed laser photolysis of Cl(2)O at 248 nm or Cl(2)/Cl(2)O mixtures at 351 nm at low temperature (200-228 K) and high pressure (approximately 700 Torr, He) was used to produce ClO radicals and subsequently Cl(2)O(2) via the termolecular ClO self-reaction. The Cl(2)O(2) spectrum was obtained from spectra recorded following the completion of the gas-phase ClO radical chemistry. The spectral analysis used observed isosbestic points at 271, 312.9, and 408.5 nm combined with reaction stoichiometry and chlorine mass balance to determine the Cl(2)O(2) spectrum. The Cl(2)O(2) UV absorption spectrum peaks at 244.5 nm with a cross section of 7.6(-0.5)(+0.8) x 10(-18) cm(2) molecule(-1) where the quoted error limits are 2sigma and include estimated systematic errors. The Cl(2)O(2) absorption cross sections obtained for wavelengths in the range 300-420 nm are in good agreement with the Cl(2)O(2) spectrum reported previously by Burkholder et al. (J. Phys. Chem. A 1990, 94, 687) and significantly higher than the values reported by Pope et al. (J. Phys. Chem. A 2007, 111, 4322). A possible explanation for the discrepancy in the Cl(2)O(2) cross section values with the Pope et al. study is discussed. Representative, atmospheric photolysis rate coefficients are calculated and a range of uncertainty estimated based on the determination of sigma(Cl(2)O(2))(lambda) in this work. Although improvements in our fundamental understanding of the photochemistry of Cl(2)O(2) are still desired, this work indicates that major revisions in current atmospheric chemical mechanisms are not required to simulate observed polar ozone depletion.

14.
J Phys Chem A ; 111(45): 11608-17, 2007 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-17944445

RESUMEN

The reaction kinetics of chlorine atoms with a series of partially fluorinated straight-chain alcohols, CF(3)CH(2)CH(2)OH (1), CF(3)CF(2)CH(2)OH (2), CHF(2)CF(2)CH(2)OH (3), and CF(3)CHFCF(2)CH(2)OH (4), were studied in the gas phase over the temperature range of 273-363 K by using very low-pressure reactor mass spectrometry. The absolute rate coefficients were given by the expressions (in cm(3) molecule(-1) s(-1)): k(1) = (4.42 +/- 0.48) x 10(-11) exp(-255 +/- 20/T); k(1)(303) = (1.90 +/- 0.17) x 10(-11), k(2) = (2.23 +/- 0.31) x 10(-11) exp(-1065 +/- 106/ T); k(2)(303) = (6.78 +/- 0.63) x 10(-13), k(3) = (8.51 +/- 0.62) x 10(-12) exp(-681 +/- 72/T); k(3)(303) = (9.00 +/- 0.82) x 10(-13) and k(4) = (6.18 +/- 0.84) x 10(-12) exp(-736 +/- 42/T); k(4)(303) = (5.36 +/- 0.51) x 10(-13). The quoted 2sigma uncertainties include the systematic errors. All title reactions proceed via a hydrogen atom metathesis mechanism leading to HCl. Moreover, the oxidation of the primarily produced radicals was investigated, and the end products were the corresponding aldehydes (R(F)-CHO; R(F) = -CH(2)CF(3), -CF(2)CF(3), -CF(2)CHF(2), and -CF(2)CHFCF(3)), providing a strong experimental indication that the primary reactions proceed mainly via the abstraction of a methylenic hydrogen adjacent to a hydroxyl group. Finally, the bond strengths and ionization potentials for the title compounds were determined by density functional theory calculations, which also suggest that the alpha-methylenic hydrogen is mainly under abstraction by Cl atoms. The correlation of room-temperature rate coefficients with ionization potentials for a set of 27 molecules, comprising fluorinated C2-C5 ethers and C2-C4 alcohols, is good with an average deviation of a factor of 2, and is given by the expression log(k) (in cm(3) molecule(-1) s(-1)) = (5.8 +/- 1.4) - (1.56 +/- 0.13) x (ionization potential (in eV)).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA