Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Theriogenology ; 217: 113-126, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38271765

RESUMEN

Most in vitro models of oviduct epithelial cells (OEC) used thus far to gain insights into embryo-maternal communication induce cell dedifferentiation or are technically challenging. Moreover, although the presence of developing embryos has been shown to alter gene expression in OEC, the effect of embryos on OEC physiology remains largely unknown. Here, we propose a model based on bovine oviduct epithelial spheroids (OES) with specific shape and diameter (100-200 µm) criteria. The aims of this study were to i) determine the appropriate culture conditions of bovine OES cultured in suspension by evaluating their morphology, total cell number, viability, and activity of ciliated cells; ii) monitor gene expression in OES at the time of their formation (day 0) and over the 10 days of culture; and iii) test whether the vicinity of developing embryos affects OES quality criteria. On day 10, the proportions of vesicle-shaped OES (V-OES) were higher in M199/500 (500 µl of HEPES-buffered TCM-199) and synthetic oviduct fluid (SOF)/25 (25-µL droplet of SOF medium under mineral oil) than in M199/25 (25-µL droplet of M199 under mineral oil). The proportion of viable cells in V-OES was not affected by culture conditions and remained high (>80%) through day 10. The total number of cells per V-OES decreased over time except in SOF/25, while the proportions of ciliated cells increased over time in M199/500 but decreased in M199/25 and SOF/25. The movement amplitude of OES in suspension decreased over time under all culture conditions. Moreover, the gene expression of ANXA1, ESR1, HSPA8, and HSPA1A in OES remained stable during culture, while that of PGR and OVGP1 decreased from day 0 to day 10. Last, the co-culture of developing embryos with OES in SOF/25 increased the rates of blastocysts on days 7 and 8 compared to embryos cultured alone, and increased the proportion of V-OES compared to OES cultured alone. In conclusion, M199/500 and SOF/25 provided the optimal conditions for the long-time culture of OES. The supporting effect of OES on embryo development and of developing embryos on OES morphology was evidenced for the first time. Altogether, these results point OES as an easy-to-use, standardizable, and physiological model to study embryo-maternal interactions in cattle.


Asunto(s)
Fertilización In Vitro , Aceite Mineral , Femenino , Bovinos , Animales , Fertilización In Vitro/veterinaria , Embrión de Mamíferos , Trompas Uterinas , Oviductos , Blastocisto/fisiología , Medios de Cultivo , Desarrollo Embrionario/fisiología
2.
Environ Pollut ; 330: 121818, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37182577

RESUMEN

Bisphenol (BP) structural analogues of BPA are widely used. Previous studies showed similar effects of BPA and BPS on reproduction in several species including human. We hypothesised that the similar effects of several bisphenols (BPs) could accumulate in granulosa cells (GCs) and affects steroidogenesis. This study investigated the effects of seven BP analogues and their equimolar cocktail on human granulosa cells (hGC) and assessed BPA, BPS, BPF and BPAF level exposures in the follicular fluid of 277 women undergoing Assisted Reproductive Technology. The hGCs were recovered after women oocyte punctures and treated with the seven BP analogues (BPS, BPA, BPAF, BPF, BPAP, BPE and BPB) or their equimolar cocktail of 7 × 1.43 or 7 × 7.14 µM for each of the seven BPs, the sum of BPs reaching 10 ("∑BPs 10 µM"), or 50 µM ("∑BPs 50 µM"), respectively. Oestradiol and progesterone secretion, cell proliferation, viability and expression of steroidogenic enzymes were investigated. Progesterone secretion was decreased by 6 BPs 10 µM and the cocktail "∑BPs 10 µM", (-17.8 to -41.3%) and by all seven BPs 50 µM and "∑BPs 50 µM" (-21.8 to -84.2%). Oestradiol secretion was decreased only by 50 µM BPAF and BPAP (-37.8% and -44%, respectively), with corresponding decreases in CYP17A1 and CYP19A1 gene expression. Cellular proliferation was decreased after treatment with 50 µM BPAF (-32.2%), BPAP (-29%), BPB (-24%) and the equimolar cocktail "∑BPs 50 µM" (-33.1%). BPB (50 µM) and the cocktail "∑BPs 50 µM" increased HSD3B2 mRNA expression. At least one BP was detected in 64 of 277 (23.1%) women follicular fluids. Similar effects of the seven BPs or their cocktail were observed on progesterone secretion and/or on cell proliferation, suggesting cumulative effects of BPs. Our results highlight the urge to consider all BPs simultaneously and to further investigate the potential additive or synergistic effects of several BPs.


Asunto(s)
Compuestos de Bencidrilo , Progesterona , Humanos , Femenino , Masculino , Compuestos de Bencidrilo/farmacología , Células de la Granulosa , Estradiol
3.
J Ovarian Res ; 16(1): 30, 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36737804

RESUMEN

BACKGROUND: Ovarian granulosa cells (GC) are essential for the development and maturation of a proper oocyte. GC are sensitive to endocrine disruptors, including bisphenol A (BPA) and its analogue bisphenol S (BPS), plasticisers present in everyday consumer products. BPA exhibits greater binding affinity for the membrane oestrogen receptor (GPER) than for the nuclear oestrogen receptors (ERα and ERß). Here, we analysed the effects of BPA and BPS on the steroidogenesis of ovine GC in vitro, as well as their early mechanisms of action, the ovine being a relevant model to study human reproductive impairment. Disruption of GC steroidogenesis might alter oocyte quality and consequently fertility rate. In addition, we compared the effects of a specific GPER agonist (G-1) and antagonist (G-15) to those of BPA and BPS. Ewe GC were cultured with BPA or BPS (10 or 50 µM) or G-1 (1 µM) and/or G-15 (10 µM) for 48 h to study steroidogenesis. RESULTS: Both BPA and BPS (10 µM) altered the secretion of progesterone, however, only BPS (10 µM) affected oestradiol secretion. RNA-seq was performed on GC after 1 h of culture with BPA or BPS (50 µM) or G-1 (10 µM), followed by real-time PCR analyses of differentially expressed genes after 12, 24 and 48 h of culture. The absence of induced GPER target genes showed that BPA and BPS did not activate GPER in GC after 1 h of treatment. These molecules exhibited mainly independent early mechanisms of action. Gene ontology analysis showed that after 1 h of treatment, BPA mainly disrupted the expression of the genes involved in metabolism and transcription, while BPS had a smaller effect and impaired cellular communications. BPA had a transient effect on the expression of CHAC1 (NOTCH signalling and oxidative balance), JUN (linked to MAPK pathway), NR4A1 (oestradiol secretion inhibition), ARRDC4 (endocytose of GPCR) and KLF10 (cell growth, differentiation and apoptosis), while expression changes were maintained over time for the genes LSMEM1 (linked to MAPK pathway), TXNIP (oxidative stress) and LIF (cell cycle regulation) after 12 and 48 h, respectively. CONCLUSION: In conclusion, although they exhibited similar effects, BPA and BPS impaired different molecular pathways in GC in vitro. New investigations will be necessary to follow the temporal changes of these genes over time, as well as the biological processes involved.


Asunto(s)
Células de la Granulosa , Oocitos , Femenino , Ovinos , Animales , Humanos , Hormonas Esteroides Gonadales , Estradiol
4.
Toxics ; 10(8)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-36006116

RESUMEN

Bisphenol S (BPS) affects terminal folliculogenesis by impairing steroidogenesis in granulosa cells from different species. Nevertheless, limited data are available on its effects during basal folliculogenesis. In this study, we evaluate in vitro the effects of a long-term BPS exposure on a model of basal follicular development in a mono-ovulatory species. We cultured ovine preantral follicles (180−240 µm, n = 168) with BPS (0.1 µM (possible human exposure dose) or 10 µM (high dose)) and monitored antrum appearance and follicular survival and growth for 15 days. We measured hormonal secretions (oestradiol (at day 13 [D13]), progesterone and anti-Müllerian hormone [D15]) and expression of key follicular development and redox status genes (D15) in medium and whole follicles, respectively. BPS (0.1 µM) decreased oestradiol secretion compared with the control (−48.8%, p < 0.001), without significantly impairing antrum appearance, follicular survival and growth, anti-Müllerian hormone and progesterone secretion and target gene expression. Thus, BPS could also impair oestradiol secretion during basal folliculogenesis as it is the case during terminal folliculogenesis. It questions the use of BPS as a safe BPA substitute in the human environment. More studies are required to elucidate mechanisms of action of BPS and its effects throughout basal follicular development.

5.
Front Endocrinol (Lausanne) ; 13: 892213, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35685208

RESUMEN

Bisphenol A (BPA), a plasticizer and endocrine disruptor, has been substituted by bisphenol S (BPS), a structural analogue that had already shown adverse effects on granulosa cell steroidogenesis. The objective of this study was to assess the effect of chronic exposure to BPS, a possible endocrine disruptor, on steroid hormones in the ovary, oviduct and plasma using the ewe as a model. Given the interaction between steroidogenesis and the metabolic status, the BPS effect was tested according to two diet groups. Eighty adult ewes were allotted to restricted (R) and well-fed (WF) groups, that were further subdivided into two subgroups. Ewes were exposed to 50 µg BPS/kg/day in their diet (R50 and WF50 groups) or were unexposed controls (R0 and WF0 groups). After at least 3 months of BPS exposure, preovulatory follicular fluid, oviduct fluid and plasma were collected and steroid hormones were analyzed by gas chromatography coupled with tandem mass spectrometry (GC-MS/MS). A deleterious effect of restricted diet on the volume of oviduct fluid and numbers of pre-ovulatory follicles was observed. Exposure to BPS impaired estradiol concentrations in both follicular and oviduct fluids of well-fed ewes and progesterone, estradiol and estrone concentrations in plasma of restricted ewes. In addition, a significant interaction between metabolic status and BPS exposure was observed for seven steroids, including estradiol. In conclusion, BPS acts in ewes as an endocrine disruptor with differential actions according to metabolic status.


Asunto(s)
Disruptores Endocrinos , Animales , Disruptores Endocrinos/toxicidad , Estradiol , Femenino , Humanos , Oviductos/metabolismo , Fenoles , Progesterona/metabolismo , Ovinos , Sulfonas , Espectrometría de Masas en Tándem
6.
Ecotoxicol Environ Saf ; 229: 113096, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34952380

RESUMEN

Bisphenol A (BPA), an endocrine disruptor, has been replaced by structural analogues including bisphenol S (BPS). BPA and BPS exhibited similar effects regarding reproductive functions. Moreover, metabolic status and lipid metabolism are related to female fertility and could worsen BPS effects. The objective was to determine BPS in vivo effects on folliculogenesis and embryo production after chronic exposure through diet, and the influence of metabolic status in adult ewes. Sixty primiparous 2.5 year-old ewes, undergoing a restricted or well fed diet, were exposed to BPS (0, 4 or 50 µg/kg/day) for at least three months. After hormonal oestrus synchronisation and ovarian stimulation, ewes were subjected to ovum pick-up (OPU) procedures to collect immature oocytes, that underwent in vitro maturation, fertilisation and embryo production. Body weight, body condition score and plasma glucose were higher in well-fed compared to restricted ewes, while plasma NEFA was lower during the 4-5 months after the beginning of the diets. Plasma progesterone levels increased on day 5 before OPU session in well-fed compared to restricted ewes. No effect of BPS dose was observed on follicle population, plasma AMH levels and embryo production numbers and rates. However, a significant diet x BPS dose interaction was reported for cleaved embryos, > 4-cell embryos, blastocyst and early blastocyst numbers, and plasma triiodothyronine levels. Our study showed that a contrasted diet did not affect follicle population nor embryo production in adult ewes but could affect the quality and progesterone secretion of the corpus luteum. Chronic low BPS exposure had no effect on follicular population and oocyte competence. Nevertheless, the significant diet x dose interactions observed on embryo production suggest that BPS effect is modulated by metabolic status. Further studies are required to assess the risk of BPS exposure for public reproductive health.


Asunto(s)
Oocitos , Sulfonas , Animales , Dieta/veterinaria , Embrión de Mamíferos , Femenino , Fenoles , Ovinos
7.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34769186

RESUMEN

Protein palmitoylation is a reversible post-translational modification by fatty acids (FA), mainly a palmitate (C16:0). Palmitoylation allows protein shuttling between the plasma membrane and cytosol to regulate protein stability, sorting and signaling activity and its deficiency leads to diseases. We aimed to characterize the palmitoyl-proteome of ovarian follicular cells and molecular machinery regulating protein palmitoylation within the follicle. For the first time, 84 palmitoylated proteins were identified from bovine granulosa cells (GC), cumulus cells (CC) and oocytes by acyl-biotin exchange proteomics. Of these, 32 were transmembrane proteins and 27 proteins were detected in bovine follicular fluid extracellular vesicles (ffEVs). Expression of palmitoylation and depalmitoylation enzymes as palmitoyltransferases (ZDHHCs), acylthioesterases (LYPLA1 and LYPLA2) and palmitoylthioesterases (PPT1 and PPT2) were analysed using transcriptome and proteome data in oocytes, CC and GC. By immunofluorescence, ZDHHC16, PPT1, PPT2 and LYPLA2 proteins were localized in GC, CC and oocyte. In oocyte and CC, abundance of palmitoylation-related enzymes significantly varied during oocyte maturation. These variations and the involvement of identified palmitoyl-proteins in oxidation-reduction processes, energy metabolism, protein localization, vesicle-mediated transport, response to stress, G-protein mediated and other signaling pathways suggests that protein palmitoylation may play important roles in oocyte maturation and ffEV-mediated communications within the follicle.


Asunto(s)
Bovinos/metabolismo , Folículo Ovárico/metabolismo , Proteínas/metabolismo , Animales , Células Cultivadas , Células del Cúmulo/química , Células del Cúmulo/metabolismo , Femenino , Células de la Granulosa/química , Células de la Granulosa/metabolismo , Lipoilación , Oocitos/química , Oocitos/metabolismo , Folículo Ovárico/química , Proteínas/análisis , Proteómica
8.
Int J Mol Sci ; 21(18)2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32932995

RESUMEN

Lipid metabolism in ovarian follicular cells supports the preparation of an enclosed oocyte to ovulation. We aimed to compare lipid composition of a dominant large follicle (LF) and subordinated small follicles (SFs) within the same ovaries. Mass spectrometry imaging displayed the differences in the distribution of several lipid features between the different follicles. Comparison of lipid fingerprints between LF and SF by Matrix Assisted Laser Desorption/Ionisation Time-Of-Flight (MALDI-TOF) mass spectrometry revealed that in the oocytes, only 8 out of 468 detected lipids (1.7%) significantly changed their abundance (p < 0.05, fold change > 2). In contrast, follicular fluid (FF), granulosa, theca and cumulus cells demonstrated 55.5%, 14.9%, 5.3% and 9.8% of significantly varied features between LF and SF, respectively. In total, 25.2% of differential lipids were identified and indicated potential changes in membrane and signaling lipids. Tremendous changes in FF lipid composition were likely due to the stage specific secretions from somatic follicular cells that was in line with the differences observed from FF extracellular vesicles and gene expression of candidate genes in granulosa and theca cells between LF and SF. In addition, lipid storage in granulosa and theca cells varied in relation to follicular size and atresia. Differences in follicular cells lipid profiles between LF and SF may probably reflect follicle atresia degree and/or accumulation of appropriate lipids for post-ovulation processes as formation of corpus luteum. In contrast, the enclosed oocyte seems to be protected during final follicular growth, likely due in part to significant lipid transformations in surrounding cumulus cells. Therefore, the enclosed oocyte could likely keep lipid building blocks and energy resources to support further maturation and early embryo development.


Asunto(s)
Líquido Folicular/metabolismo , Lípidos/fisiología , Oocitos/metabolismo , Folículo Ovárico/metabolismo , Ovario/metabolismo , Animales , Bovinos , Células del Cúmulo/metabolismo , Femenino , Células de la Granulosa/metabolismo , Ovulación/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Células Tecales/metabolismo
9.
Sci Rep ; 10(1): 4992, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32193429

RESUMEN

Breast Cancer Anti-estrogen Resistance 4 (BCAR4) was previously characterised in bovine species as a gene preferentially expressed in oocytes, whose inhibition is detrimental to in vitro embryo development. But its role in oogenesis, folliculogenesis and globally fertility in vivo remains unknown. Because the gene is not conserved in mice, rabbits were chosen for investigation of BCAR4 expression and function in vivo. BCAR4 displayed preferential expression in the ovary compared to somatic organs, and within the ovarian follicle in the oocyte compared to somatic cells. The transcript was detected in follicles as early as the preantral stage. Abundance decreased throughout embryo development until the blastocyst stage. A lineage of genome-edited rabbits was produced; BCAR4 expression was abolished in follicles from homozygous animals. Females of wild-type, heterozygous and homozygous genotypes were examined for ovarian physiology and reproductive parameters. Follicle growth and the number of ovulations in response to hormonal stimulation were not significantly different between genotypes. Following insemination, homozygous females displayed a significantly lower delivery rate than their heterozygous counterparts (22 ± 7% vs 71 ± 11% (mean ± SEM)), while prolificacy was 1.8 ± 0.7 vs 6.0 ± 1.4 kittens per insemination. In conclusion, BCAR4 is not essential for follicular growth and ovulation but it contributes to optimal fertility in rabbits.


Asunto(s)
Desarrollo Embrionario/genética , Fertilidad/genética , Edición Génica , Folículo Ovárico/fisiología , ARN Largo no Codificante/fisiología , Animales , Femenino , Expresión Génica , Folículo Ovárico/metabolismo , Ovulación/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Conejos
10.
Int J Mol Sci ; 21(5)2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32155818

RESUMEN

Bisphenol S (BPS) is a structural analog of the endocrine disruptor bisphenol A (BPA); it is the main BPA replacement in the plastics industry. Previous studies have shown that BPA and BPS exhibit similar effects on reproduction in fish and rodent species. BPS reportedly alters steroidogenesis in bovine granulosa cells. Luteinised granulosa cells collected from 59 women who were undergoing an in vitro fertilization procedure were cultured for 48 h in the presence or absence of BPS (10 nM, 100 nM, 1 µM, 10 µM or 50 µM). BPS exposure was investigated by assessing follicular fluids from these 59 women for their BPS content. Culture medium, cells, total messenger RNA (mRNA) and total protein extracted from the luteinised granulosa cells were examined for oestradiol and progesterone secretion, cellular proliferation, viability, gene expression, steroidogenic enzyme expression and cell signaling. BPS was measured in follicular fluids using mass spectrometry. Exposure of granulosa cells to 10 or 50 µM BPS for 48 h induced a 16% (p = 0.0059) and 64% (p < 0.0001) decrease, respectively, in progesterone secretion; 50 µM BPS decreased oestradiol secretion by 46% (p < 0.0001). Ten µM BPS also tended to reduce CYP11A1 protein expression by 37% (p = 0.0947) without affecting HSD3B1 and CYP19A1 expression. Fifty µM BPS increased ERRγ expression. Environmental levels of BPS (nanomolar range) did not induce changes in steroidogenesis in human granulosa cells. The effects of BPS were observed after only 48 h of BPS exposure. These acute effects might be similar to chronic effects of physiological BPS levels.


Asunto(s)
Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Líquido Folicular/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Células de la Granulosa/metabolismo , Fenoles/farmacología , Progesterona/biosíntesis , Sulfonas/farmacología , Células Cultivadas , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Femenino , Líquido Folicular/efectos de los fármacos , Células de la Granulosa/efectos de los fármacos , Células de la Granulosa/patología , Humanos , Técnicas In Vitro
11.
Reproduction ; 159(5): 571-583, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32092037

RESUMEN

Bisphenols, plasticisers used in food containers, can transfer to food. Bisphenol A (BPA) has been described as an endocrine disruptor and consequently banned from the food industry in several countries. It was replaced by a structural analogue, Bisphenol S (BPS). BPA action on the steroidogenesis is one of the mechanisms underlying its adverse effects on the efficiency of female reproduction. This study aimed to determine whether BPS is a safe alternative to BPA regarding GC functions. Antral follicles (2-6 mm), of approximatively 1000 adult ewe ovaries, were aspired and GC purified. For 48 h, ovine GC were treated with BPA or BPS (from 1 nM to 200 µM) and the effects on cell viability, proliferation, steroid production, steroidogenic enzyme expression and signalling pathways were investigated. Dosages at and greater than 100 µM BPA and 10 µM BPS decreased progesterone secretion by 39% (P < 0.001) and 22% (P = 0.040), respectively. BPA and BPS 10 µM and previously mentioned concentrations increased oestradiol secretion two-fold (P < 0.001 and P = 0.082, respectively). Only 100 µM BPA induced a decrease (P < 0.001) in gene expression of the enzymes of steroidogenesis involved in the production of progesterone. BPA reduced MAPK3/1 phosphorylation and ESR1 and ESR2 gene expression, effects that were not observed with BPS. BPA and BPS altered steroidogenesis of ovine GC. Thus, BPS does not appear to be a safe alternative for BPA. Further investigations are required to elucidate BPA and BPS mechanisms of action.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Disruptores Endocrinos/farmacología , Estradiol/metabolismo , Células de la Granulosa/efectos de los fármacos , Folículo Ovárico/efectos de los fármacos , Fenoles/farmacología , Progesterona/metabolismo , Sulfonas/farmacología , Animales , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Expresión Génica/efectos de los fármacos , Células de la Granulosa/metabolismo , Folículo Ovárico/metabolismo , Fosforilación/efectos de los fármacos , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Ovinos , Transducción de Señal/efectos de los fármacos
12.
Int J Mol Sci ; 21(4)2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-32059612

RESUMEN

INTRODUCTION: Bisphenol A (BPA) is a widespread compound in the plastic industry that is especially used to produce baby bottles, food packaging and metal cans. BPA, an endocrine disruptor, leads to alterations in reproductive function and therefore has been banned from the food industry. Unregulated BPA analogues, particularly Bisphenol S (BPS), have emerged and are now used in the plastic industry. Thus, this study aimed to examine the acute effects of low and environmental doses of BPS on ewe oocyte quality and developmental competence, and its mechanism of action, during in vitro maturation. METHODS: Ewe cumulus-oocyte complexes underwent in vitro maturation in the presence or absence of BPS (1 nM, 10 nM, 100 nM, 1 µM or 10 µM). Oocytes were then subjected to in vitro fertilisation and development. RESULTS: 1 µM BPS induced a 12.7% decrease in the cleavage rate (p = 0.004) and a 42.6% decrease in the blastocyst rate (p = 0.017) compared to control. The blastocyst rate reduction was also observed with 10 nM BPS. Furthermore, 10 µM BPS reduced the oocyte maturation rate, and 1 µM BPS decreased cumulus cell progesterone secretion. PR and AMH gene expression were reduced in cumulus cells. BPS induced a 5-fold increase in MAPK 3/1 activation (p = 0.04). CONCLUSIONS: BPS impaired ewe oocyte developmental competence. The data suggest that BPS might not be a safe BPA analogue. Further studies are required to elucidate its detailed mechanism of action.


Asunto(s)
Técnicas de Maduración In Vitro de los Oocitos/métodos , Oocitos/efectos de los fármacos , Oocitos/crecimiento & desarrollo , Fenoles/farmacología , Sulfonas/farmacología , Animales , Compuestos de Bencidrilo/antagonistas & inhibidores , Compuestos de Bencidrilo/farmacología , Blastocisto/efectos de los fármacos , Blastocisto/metabolismo , Supervivencia Celular/efectos de los fármacos , Células del Cúmulo/efectos de los fármacos , Células del Cúmulo/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/genética , Disruptores Endocrinos/farmacología , Fertilización In Vitro , Regulación del Desarrollo de la Expresión Génica , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Oocitos/metabolismo , Oogénesis/efectos de los fármacos , Fenoles/antagonistas & inhibidores , Fosforilación , Progesterona/metabolismo , Ovinos , Sulfonas/antagonistas & inhibidores
13.
Cell Mol Life Sci ; 77(6): 1177-1196, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31327046

RESUMEN

In mammalian ovaries, the theca layers of growing follicles are critical for maintaining their structural integrity and supporting androgen synthesis. Through combining the postnatal monitoring of ovaries by abdominal magnetic resonance imaging, endocrine profiling, hormonal analysis of the follicular fluid of growing follicles, and transcriptomic analysis of follicular theca cells, we provide evidence that the exposure of ovine fetuses to testosterone excess activates postnatal follicular growth and strongly affects the functions of follicular theca in adulthood. Prenatal exposure to testosterone impaired androgen synthesis in the small antral follicles of adults and affected the expression in their theca cells of a wide array of genes encoding extracellular matrix components, their membrane receptors, and signaling pathways. Most expression changes were uncorrelated with the concentrations of gonadotropins, steroids, and anti-Müllerian hormone in the recent hormonal environment of theca cells, suggesting that these changes rather result from the long-term developmental effects of testosterone on theca cell precursors in fetal ovaries. Disruptions of the extracellular matrix structure and signaling in the follicular theca and ovarian cortex can explain the acceleration of follicle growth through altering the stiffness of ovarian tissue. We propose that these mechanisms participate in the etiology of the polycystic ovarian syndrome, a major reproductive pathology in woman.


Asunto(s)
Síndrome del Ovario Poliquístico/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Testosterona/metabolismo , Células Tecales/metabolismo , Animales , Células Cultivadas , Femenino , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Folículo Ovárico/citología , Folículo Ovárico/crecimiento & desarrollo , Folículo Ovárico/metabolismo , Síndrome del Ovario Poliquístico/genética , Embarazo , Efectos Tardíos de la Exposición Prenatal/genética , Ovinos , Células Tecales/citología , Células Tecales/ultraestructura
14.
BMC Evol Biol ; 19(1): 137, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31269894

RESUMEN

BACKGROUND: Previously, we have demonstrated that genes involved in ovarian function are highly conserved throughout evolution. In this study, we aimed to document the conservation of genes involved in spermatogenesis from flies to vertebrates and their expression profiles in vertebrates. RESULTS: We retrieved 379 Drosophila melanogaster genes that are functionally involved in male reproduction according to their mutant phenotypes and listed their vertebrate orthologs. 83% of the fly genes have at least one vertebrate ortholog for a total of 625 mouse orthologs. This conservation percentage is almost twice as high as the 42% rate for the whole fly genome and is similar to that previously found for genes preferentially expressed in ovaries. Of the 625 mouse orthologs, we selected 68 mouse genes of interest, 42 of which exhibited a predominant relative expression in testes and 26 were their paralogs. These 68 mouse genes exhibited 144 and 60 orthologs in chicken and zebrafish, respectively, gathered in 28 groups of paralogs. Almost two thirds of the chicken orthologs and half of the zebrafish orthologs exhibited a relative expression ≥50% in testis. Finally, our focus on functional in silico data demonstrated that most of these genes were involved in the germ cell process, primarily in structure elaboration/maintenance and in acid nucleic metabolism. CONCLUSION: Our work confirms that the genes involved in germ cell development are highly conserved across evolution in vertebrates and invertebrates and display a high rate of conservation of preferential testicular expression among vertebrates. Among the genes highlighted in this study, three mouse genes (Lrrc46, Pabpc6 and Pkd2l1) have not previously been described in the testes, neither their zebrafish nor chicken orthologs. The phylogenetic approach developed in this study finally allows considering new testicular genes for further fundamental studies in vertebrates, including model species (mouse and zebrafish).


Asunto(s)
Pollos/genética , Evolución Molecular , Testículo/metabolismo , Pez Cebra/genética , Animales , Drosophila melanogaster/genética , Masculino , Ratones , Filogenia , Espermatogénesis/genética , Testículo/citología
15.
Int J Mol Sci ; 19(10)2018 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-30347829

RESUMEN

Ovarian follicle provides a favorable environment for enclosed oocytes, which acquire their competence in supporting embryo development in tight communications with somatic follicular cells and follicular fluid (FF). Although steroidogenesis in theca (TH) and granulosa cells (GC) is largely studied, and the molecular mechanisms of fatty acid (FA) metabolism in cumulus cells (CC) and oocytes are emerging, little data is available regarding lipid metabolism regulation within ovarian follicles. In this study, we investigated lipid composition and the transcriptional regulation of FA metabolism in 3⁻8 mm ovarian follicles in bovine. Using liquid chromatography and mass spectrometry (MS), 438 and 439 lipids were identified in FF and follicular cells, respectively. From the MALDI-TOF MS lipid fingerprints of FF, TH, GC, CC, and oocytes, and the MS imaging of ovarian sections, we identified 197 peaks and determined more abundant lipids in each compartment. Transcriptomics revealed lipid metabolism-related genes, which were expressed constitutively or more specifically in TH, GC, CC, or oocytes. Coupled with differential lipid composition, these data suggest that the ovarian follicle contains the metabolic machinery that is potentially capable of metabolizing FA from nutrient uptake, degrading and producing lipoproteins, performing de novo lipogenesis, and accumulating lipid reserves, thus assuring oocyte energy supply, membrane synthesis, and lipid-mediated signaling to maintain follicular homeostasis.


Asunto(s)
Metabolismo de los Lípidos , Folículo Ovárico/metabolismo , Transcriptoma , Animales , Bovinos , Femenino
16.
Genome Biol Evol ; 10(10): 2629-2642, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30060195

RESUMEN

This work presents a systematic approach to study the conservation of genes between fruit flies and mammals. We have listed 971 Drosophila genes involved in female reproduction at the ovarian level and systematically looked for orthologs in the Ciona, zebrafish, coelacanth, lizard, chicken, and mouse. Depending on the species, the percentage of these Drosophila genes with at least one ortholog varies between 69% and 78%. In comparison, only 42% of all the Drosophila genes have an ortholog in the mouse genome (P < 0.0001), suggesting a dramatically higher evolutionary conservation of ovarian genes. The 177 Drosophila genes that have no ortholog in mice and other vertebrates correspond to genes that are involved in mechanisms of oogenesis that are specific to the fruit fly or the insects. Among 759 genes with at least one ortholog in the zebrafish, 73 have an expression enriched in the ovary in this species (RNA-seq data). Among 760 genes that have at least one ortholog in the mouse; 76 and 11 orthologs are reported to be preferentially and exclusively expressed in the mouse ovary, respectively (based on the UniGene expressed sequence tag database). Several of them are already known to play a key role in murine oogenesis and/or to be enriched in the mouse/zebrafish oocyte, whereas others have remained unreported. We have investigated, by RNA-seq and real-time quantitative PCR, the exclusive ovarian expression of 10 genes in fish and mammals. Overall, we have found several novel candidates potentially involved in mammalian oogenesis by an evolutionary approach and using the fruit fly as an animal model.


Asunto(s)
Cordados/genética , Drosophila melanogaster/genética , Oogénesis/genética , Homología de Secuencia de Ácido Nucleico , Animales , Secuencia de Bases , Evolución Biológica , Secuencia Conservada , Femenino , Masculino , Ratones
17.
J Vis Exp ; (123)2017 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-28518085

RESUMEN

The field of assisted reproduction has been developed to treat infertility in women, companion animals, and endangered species. In the horse, assisted reproduction also allows for the production of embryos from high performers without interrupting their sports career and contributes to an increase in the number of foals from mares of high genetic value. The present manuscript describes the procedures used for collecting immature and mature oocytes from horse ovaries using ovum pick-up (OPU). These oocytes were then used to investigate the incidence of aneuploidy by adapting a protocol previously developed in mice. Specifically, the chromosomes and the centromeres of metaphase II (MII) oocytes were fluorescently labeled and counted on sequential focal plans after confocal laser microscope scanning. This analysis revealed a higher incidence in the aneuploidy rate when immature oocytes were collected from the follicles and matured in vitro compared to in vivo. Immunostaining for tubulin and the acetylated form of histone four at specific lysine residues also revealed differences in the morphology of the meiotic spindle and in the global pattern of histone acetylation. Finally, the expression of mRNAs coding for histone deacetylases (HDACs) and acetyl-transferases (HATs) was investigated by reverse transcription and quantitative-PCR (q-PCR). No differences in the relative expression of transcripts were observed between in vitro and in vivo matured oocytes. In agreement with a general silencing of the transcriptional activity during oocyte maturation, the analysis of the total transcript amount can only reveal mRNA stability or degradation. Therefore, these findings indicate that other translational and post-translational regulations might be affected. Overall, the present study describes an experimental approach to morphologically and biochemically characterize the horse oocyte, a cell type that is extremely challenging to study due to low sample availability. However, it can expand our knowledge on the reproductive biology and infertility in monovulatory species.


Asunto(s)
Segregación Cromosómica , Histonas/metabolismo , Caballos/fisiología , Oocitos/fisiología , Huso Acromático/ultraestructura , Acetilación , Aneuploidia , Animales , Centrómero/ultraestructura , Femenino , Expresión Génica , Histona Acetiltransferasas/biosíntesis , Histona Acetiltransferasas/genética , Histona Desacetilasas/biosíntesis , Histona Desacetilasas/genética , Histonas/química , Técnicas de Maduración In Vitro de los Oocitos , Metafase , Oocitos/metabolismo , Óvulo , ARN Mensajero/biosíntesis , ARN Mensajero/genética
18.
Reprod Fertil Dev ; 29(4): 721-730, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26651296

RESUMEN

Implantation failure and genetic developmental disabilities in mammals are caused by errors in chromosome segregation originating mainly in the oocyte during meiosis I. Some conditions, like maternal ageing or in vitro maturation (IVM), increase the incidence of oocyte aneuploidy. Here oocytes from adult mares were used to investigate oocyte maturation in a monovulatory species. Experiments were conducted to compare: (1) the incidence of aneuploidy, (2) the morphology of the spindle, (3) the acetylation of lysine 16 on histone H4 (H4K16) and (4) the relative amount of histone acetyltransferase 1 (HAT1), K(lysine) acetyltransferase 8 (KAT8, also known as MYST1), histone deacetylase 1 (HDAC1) and NAD-dependent protein deacetylase sirtuin 1 (SIRT1) mRNA in metaphase II stage oocytes that were in vitro matured or collected from peri-ovulatory follicles. The frequency of aneuploidy and anomalies in spindle morphology was increased following IVM, along with a decrease in H4K16 acetylation that was in agreement with our previous observations. However, differences in the amount of the transcripts investigated were not detected. These results suggest that the degradation of transcripts encoding for histone deacetylases and acetyltransferases is not involved in the changes of H4K16 acetylation observed following IVM, while translational or post-translational mechanisms might have a role. Our study also suggests that epigenetic instabilities introduced by IVM may affect the oocyte and embryo genetic stability.


Asunto(s)
Segregación Cromosómica/fisiología , Histonas/metabolismo , Técnicas de Maduración In Vitro de los Oocitos , Oocitos/metabolismo , Huso Acromático/fisiología , Acetilación , Animales , Femenino , Caballos , Meiosis/fisiología , Oogénesis/fisiología
19.
Reprod Fertil Dev ; 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25689671

RESUMEN

In cattle, early embryonic failure plays a major role in the limitation of reproductive performance and is influenced by genetic effects. Suboptimal oocyte quality, including an inadequate store of maternal factors, is suspected to contribute to this phenomenon. In the present study, 13 Montbeliarde cows were phenotyped on oocyte quality, based on their ability to produce viable embryos after in vitro maturation, fertilisation and culture for 7 days. This discriminated two groups of animals, exhibiting developmental rates below 18.8% or above 40.9% (relative to cleaved embryos). Using microarrays, transcriptomic profiles were compared between oocytes collected in vivo from these two groups of animals. The difference in oocyte development potential was associated with changes in transcripts from 60 genes in immature oocytes and 135 genes in mature oocytes (following Bonferroni 5% correction). Of these, 16 and 32 genes were located in previously identified fertility quantitative trait loci. A subset of differential genes was investigated on distinct samples by reverse transcription-quantitative polymerase chain reaction. For SLC25A16, PPP1R14C, ROBO1, AMDHD1 and MEAF6 transcripts, differential expression was confirmed between high and low oocyte potential animals. Further sequencing and searches for polymorphisms will pave the way for implementing their use in genomic selection.

20.
Reproduction ; 148(4): 403-16, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25062803

RESUMEN

The first ovulation induced by male effect in sheep during seasonal anoestrus usually results in the development of a short cycle that can be avoided by progesterone priming before ram introduction. In elucidating the involvement of the hypothalamic-pituitary-gonadal axis in the occurrence of short cycles, the effects of progesterone and the time of anoestrus on the development of male-induced preovulatory follicles were investigated in anoestrous ewes using morphological, endocrine and molecular approaches. Ewes were primed with progesterone for 2 (CIDR2) or 12 days (CIDR12) and untreated ewes used as controls during early (April) and late (June) anoestrus. The duration of follicular growth and the lifespan of the male-induced preovulatory follicles were prolonged by ∼1.6 days in CIDR12 ewes compared with the controls. These changes were accompanied by a delay in the preovulatory LH and FSH surges and ovulation. Intra-follicular oestradiol concentration and mRNA levels of LHCGR and STAR in the granulosa and theca cells of the preovulatory follicles were higher in CIDR12 ewes than the control ewes. The expression of mRNA levels of CYP11A1 and CYP17A1 also increased in theca cells of CIDR12 ewes. CIDR2 ewes gave intermediate results. Moreover, ewes ovulated earlier in June than in April, without changes in the duration of follicular growth, but these effects were unrelated to the lifespan of corpus luteum. Our results give the first evidence supporting the positive effect of progesterone priming on the completion of growth and maturation of preovulatory follicles induced by male effect in seasonal anoestrous ewes, thereby preventing short cycles.


Asunto(s)
Anestro/efectos de los fármacos , Fármacos para la Fertilidad Femenina/farmacología , Folículo Ovárico/efectos de los fármacos , Ovulación/efectos de los fármacos , Progesterona/farmacología , Técnicas Reproductivas Asistidas/veterinaria , Anestro/genética , Anestro/metabolismo , Animales , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Estradiol/metabolismo , Femenino , Hormona Folículo Estimulante/metabolismo , Regulación de la Expresión Génica , Inhibinas/genética , Inhibinas/metabolismo , Hormona Luteinizante/metabolismo , Masculino , Folículo Ovárico/diagnóstico por imagen , Folículo Ovárico/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , ARN Mensajero/metabolismo , Receptores de HFE/genética , Receptores de HFE/metabolismo , Receptores de HL/genética , Receptores de HL/metabolismo , Estaciones del Año , Ovinos , Esteroide 17-alfa-Hidroxilasa/genética , Esteroide 17-alfa-Hidroxilasa/metabolismo , Factores de Tiempo , Ultrasonografía , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA