Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Sci Transl Med ; 16(750): eadj7308, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38838131

RESUMEN

Progranulin (PGRN) haploinsufficiency is a major risk factor for frontotemporal lobar degeneration with TAR DNA-binding protein 43 (TDP-43) pathology (FTLD-GRN). Multiple therapeutic strategies are in clinical development to restore PGRN in the CNS, including gene therapy. However, a limitation of current gene therapy approaches aimed to alleviate FTLD-associated pathologies may be their inefficient brain exposure and biodistribution. We therefore developed an adeno-associated virus (AAV) targeting the liver (L) to achieve sustained peripheral expression of a transferrin receptor (TfR) binding, brain-penetrant (b) PGRN variant [AAV(L):bPGRN] in two mouse models of FTLD-GRN, namely, Grn knockout and GrnxTmem106b double knockout mice. This therapeutic strategy avoids potential safety and biodistribution issues of CNS-administered AAVs and maintains sustained concentrations of PGRN in the brain after a single dose. AAV(L):bPGRN treatment reduced several FTLD-GRN-associated pathologies including severe motor function deficits, aberrant TDP-43 phosphorylation, dysfunctional protein degradation, lipid metabolism, gliosis, and neurodegeneration in the brain. The potential translatability of our findings was tested in an in vitro model using cocultured human induced pluripotent stem cell (hiPSC)-derived microglia lacking PGRN and TMEM106B and wild-type hiPSC-derived neurons. As in mice, aberrant TDP-43, lysosomal dysfunction, and neuronal loss were ameliorated after treatment with exogenous TfR-binding protein transport vehicle fused to PGRN (PTV:PGRN). Together, our studies suggest that peripherally administered brain-penetrant PGRN replacement strategies ameliorate FTLD-GRN relevant phenotypes including TDP-43 pathology, neurodegeneration, and behavioral deficits. Our data provide preclinical proof of concept for the use of this AAV platform for treatment of FTLD-GRN and potentially other CNS disorders.


Asunto(s)
Encéfalo , Dependovirus , Modelos Animales de Enfermedad , Degeneración Lobar Frontotemporal , Ratones Noqueados , Progranulinas , Animales , Humanos , Ratones , Encéfalo/metabolismo , Encéfalo/patología , Dependovirus/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Degeneración Lobar Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/patología , Terapia Genética , Fosforilación , Progranulinas/metabolismo , Progranulinas/genética , Receptores de Transferrina/metabolismo
2.
Nat Aging ; 4(4): 595-612, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38519806

RESUMEN

Age-related decline in brain endothelial cell (BEC) function contributes critically to neurological disease. Comprehensive atlases of the BEC transcriptome have become available, but results from proteomic profiling are lacking. To gain insights into endothelial pathways affected by aging, we developed a magnetic-activated cell sorting-based mouse BEC enrichment protocol compatible with proteomics and resolved the profiles of protein abundance changes during aging. Unsupervised cluster analysis revealed a segregation of age-related protein dynamics with biological functions, including a downregulation of vesicle-mediated transport. We found a dysregulation of key regulators of endocytosis and receptor recycling (most prominently Arf6), macropinocytosis and lysosomal degradation. In gene deletion and overexpression experiments, Arf6 affected endocytosis pathways in endothelial cells. Our approach uncovered changes not picked up by transcriptomic studies, such as accumulation of vesicle cargo and receptor ligands, including Apoe. Proteomic analysis of BECs from Apoe-deficient mice revealed a signature of accelerated aging. Our findings provide a resource for analysing BEC function during aging.


Asunto(s)
Células Endoteliales , Proteómica , Ratones , Animales , Células Endoteliales/metabolismo , Proteómica/métodos , Encéfalo/metabolismo , Endotelio/metabolismo , Apolipoproteínas E/metabolismo
3.
bioRxiv ; 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38463966

RESUMEN

Mammalian genomes fold into tens of thousands of long-range loops, but their functional role and physiologic relevance remain poorly understood. Here, using human post-mitotic neurons with rare familial Alzheimer's disease (FAD) mutations, we identify hundreds of reproducibly dysregulated genes and thousands of miswired loops prior to amyloid accumulation and tau phosphorylation. Single loops do not predict expression changes; however, the severity and direction of change in mRNA levels and single-cell burst frequency strongly correlate with the number of FAD-gained or -lost promoter-enhancer loops. Classic architectural proteins CTCF and cohesin do not change occupancy in FAD-mutant neurons. Instead, we unexpectedly find TAATTA motifs amenable to binding by DLX homeodomain transcription factors and changing noncoding RNAPolII signal at FAD-dynamic promoter-enhancer loops. DLX1/5/6 mRNA levels are strongly upregulated in FAD-mutant neurons coincident with a shift in excitatory-to-inhibitory gene expression and miswiring of multi-loops connecting enhancers to neural subtype genes. DLX1 overexpression is sufficient for loop miswiring in wildtype neurons, including lost and gained loops at enhancers with tandem TAATTA arrays and singular TAATTA motifs, respectively. Our data uncover a genome structure-function relationship between multi-loop miswiring and dysregulated excitatory and inhibitory transcriptional programs during lineage commitment of human neurons homozygously-engineered with rare FAD mutations.

4.
bioRxiv ; 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38106199

RESUMEN

DNA is folded into higher-order structures that shape and are shaped by genome function. The role for long-range loops in the establishment of new gene expression patterns during cell fate transitions remains poorly understood. Here, we investigate the link between cell-specific loops and RNA polymerase II (RNAPolII) during neural lineage commitment. We find thousands of loops decommissioned or gained de novo upon differentiation of human induced pluripotent stem cells (hiPSCs) to neural progenitors (NPCs) and post-mitotic neurons. During hiPSC-to-NPC and NPC-to-neuron transitions, genes changing from RNAPolII initiation to elongation are >4-fold more likely to anchor cell-specific loops than repressed genes. Elongated genes exhibit significant mRNA upregulation when connected in cell-specific promoter-enhancer loops but not invariant promoter-enhancer loops, promoter-promoter loops, or unlooped. Genes transitioning from repression to RNAPolII initiation exhibit slight mRNA increase independent of loop status. Our data link cell-specific loops and robust RNAPolII-mediated elongation during neural cell fate transitions.

5.
Mol Neurodegener ; 18(1): 70, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37775827

RESUMEN

BACKGROUND: With the emergence of microglia-modulating therapies there is an urgent need for reliable biomarkers to evaluate microglial activation states. METHODS: Using mouse models and human induced pluripotent stem cell-derived microglia (hiMGL), genetically modified to yield the most opposite homeostatic (TREM2-knockout) and disease-associated (GRN-knockout) states, we identified microglia activity-dependent markers. Non-targeted mass spectrometry was used to identify proteomic changes in microglia and cerebrospinal fluid (CSF) of Grn- and Trem2-knockout mice. Additionally, we analyzed the proteome of GRN- and TREM2-knockout hiMGL and their conditioned media. Candidate marker proteins were tested in two independent patient cohorts, the ALLFTD cohort (GRN mutation carriers versus non-carriers), as well as the proteomic data set available from the EMIF-AD MBD study. RESULTS: We identified proteomic changes between the opposite activation states in mouse microglia and CSF, as well as in hiMGL cell lysates and conditioned media. For further verification, we analyzed the CSF proteome of heterozygous GRN mutation carriers suffering from frontotemporal dementia (FTD). We identified a panel of six proteins (FABP3, MDH1, GDI1, CAPG, CD44, GPNMB) as potential indicators for microglial activation. Moreover, we confirmed three of these proteins (FABP3, GDI1, MDH1) to be significantly elevated in the CSF of Alzheimer's (AD) patients. Remarkably, each of these markers differentiated amyloid-positive cases with mild cognitive impairment (MCI) from amyloid-negative individuals. CONCLUSIONS: The identified candidate proteins reflect microglia activity and may be relevant for monitoring the microglial response in clinical practice and clinical trials modulating microglial activity and amyloid deposition. Moreover, the finding that three of these markers differentiate amyloid-positive from amyloid-negative MCI cases in the AD cohort suggests that these proteins associate with a very early immune response to seeded amyloid. This is consistent with our previous findings in the Dominantly Inherited Alzheimer's Disease Network (DIAN) cohort, where soluble TREM2 increases as early as 21 years before symptom onset. Moreover, in mouse models for amyloidogenesis, seeding of amyloid is limited by physiologically active microglia further supporting their early protective role. The biological functions of some of our main candidates (FABP3, CD44, GPNMB) also further emphasize that lipid dysmetabolism may be a common feature of neurodegenerative disorders.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Células Madre Pluripotentes Inducidas , Animales , Humanos , Ratones , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas Amiloidogénicas/metabolismo , Biomarcadores/metabolismo , Medios de Cultivo Condicionados/farmacología , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Granulinas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Glicoproteínas de Membrana/genética , Ratones Noqueados , Microglía/metabolismo , Proteoma , Proteómica
6.
bioRxiv ; 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37398209

RESUMEN

Background: With the emergence of microglia-modulating therapies there is an urgent need for reliable biomarkers to evaluate microglial activation states. Methods: Using mouse models and human induced pluripotent stem cell-derived microglia (hiMGL), which were genetically modified to yield the most opposite homeostatic ( TREM2- knockout) and disease-associated ( GRN -knockout) states, we identified microglia activity-dependent markers. Non-targeted mass spectrometry was used to identify changes in microglial and cerebrospinal (CSF) proteome of Grn - and Trem2 -knockout mice. Additionally, we analyzed the proteome of GRN - and TREM2 -knockout hiMGL and their conditioned media. Candidate marker proteins were tested in two independent patient cohorts, the ALLFTD cohort with 11 GRN mutation carriers and 12 non-carriers, as well as the proteomic data set available from the European Medical Information Framework Alzheimer's Disease Multimodal Biomarker Discovery (EMIF-AD MBD). Findings: We identified proteomic changes between the opposite activation states in mouse microglia and cerebrospinal fluid (CSF), as well as in hiMGL cell lysates and conditioned media. For further verification, we analyzed the CSF proteome of heterozygous GRN mutation carriers suffering from frontotemporal dementia (FTD). We identified a panel of six proteins (FABP3, MDH1, GDI1, CAPG, CD44, GPNMB) as potential indicators for microglial activation. Moreover, we confirmed three of these proteins (FABP3, GDI1, MDH1) to be significantly elevated in the CSF of AD patients. In AD, these markers differentiated amyloid-positive cases with mild cognitive impairment (MCI) from amyloid-negative individuals. Interpretation: The identified candidate proteins reflect microglia activity and may be relevant for monitoring the microglial response in clinical practice and clinical trials modulating microglial activity and amyloid deposition. Moreover, the finding that three of these markers differentiate amyloid-positive from amyloid-negative MCI cases in the AD cohort suggests that these marker proteins associate with a very early immune response to seeded amyloid. This is consistent with our previous findings in the DIAN (Dominantly Inherited Alzheimer's Disease Network) cohort, where soluble TREM2 increases as early as 21 years before symptom onset. Moreover, in mouse models for amyloidogenesis, seeding of amyloid is limited by physiologically active microglia further supporting their early protective role. The biological functions of some of our main candidates (FABP3, CD44, GPNMB) also further emphasize that lipid dysmetabolism may be a common feature of neurodegenerative disorders. Funding: This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy within the framework of the Munich Cluster for Systems Neurology (EXC 2145 SyNergy - ID 390857198 to CH, SFL and DP) and a Koselleck Project HA1737/16-1 (to CH).

7.
STAR Protoc ; 4(2): 102266, 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37148244

RESUMEN

Human-induced-pluripotent-stem-cell (hiPSC)-derived neurons are valuable for investigating brain physiology and disease. Here, we present a protocol to differentiate hiPSCs into cortical neurons with high yield and purity. We describe neural induction via dual-SMAD inhibition, followed by spot-based differentiation to provide high quantities of neural precursors. We detail their enrichment, expansion, and purification to avoid unwanted cell fates and provide optimal conditions for neural rosette proliferation. These differentiated neurons are suitable for drug testing and co-culture studies. For complete details on the use and execution of this protocol, please refer to Paquet et al.1 and Weisheit et al..2.

8.
Nat Biotechnol ; 41(11): 1618-1632, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36914885

RESUMEN

Chimeric antigen receptor T cells (CAR-T cells) have emerged as a powerful treatment option for individuals with B cell malignancies but have yet to achieve success in treating acute myeloid leukemia (AML) due to a lack of safe targets. Here we leveraged an atlas of publicly available RNA-sequencing data of over 500,000 single cells from 15 individuals with AML and tissue from 9 healthy individuals for prediction of target antigens that are expressed on malignant cells but lacking on healthy cells, including T cells. Aided by this high-resolution, single-cell expression approach, we computationally identify colony-stimulating factor 1 receptor and cluster of differentiation 86 as targets for CAR-T cell therapy in AML. Functional validation of these established CAR-T cells shows robust in vitro and in vivo efficacy in cell line- and human-derived AML models with minimal off-target toxicity toward relevant healthy human tissues. This provides a strong rationale for further clinical development.


Asunto(s)
Leucemia Mieloide Aguda , Transcriptoma , Humanos , Transcriptoma/genética , Linfocitos T , Inmunoterapia Adoptiva , Línea Celular , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/metabolismo , Línea Celular Tumoral
9.
J Biol Chem ; 299(4): 103027, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36805335

RESUMEN

Imbalances in the amounts of amyloid-ß peptides (Aß) generated by the membrane proteases ß- and γ-secretase are considered as a trigger of Alzheimer's disease (AD). Cell-free studies of γ-secretase have shown that increasing membrane thickness modulates Aß generation but it has remained unclear if these effects are translatable to cells. Here we show that the very long-chain fatty acid erucic acid (EA) triggers acyl chain remodeling in AD cell models, resulting in substantial lipidome alterations which included increased esterification of EA in membrane lipids. Membrane remodeling enhanced γ-secretase processivity, resulting in the increased production of the potentially beneficial Aß37 and/or Aß38 species in multiple cell lines. Unexpectedly, we found that the membrane remodeling stimulated total Aß secretion by cells expressing WT γ-secretase but lowered it for cells expressing an aggressive familial AD mutant γ-secretase. We conclude that EA-mediated modulation of membrane composition is accompanied by complex lipid homeostatic changes that can impact amyloidogenic processing in different ways and elicit distinct γ-secretase responses, providing critical implications for lipid-based AD treatment strategies.


Asunto(s)
Enfermedad de Alzheimer , Secretasas de la Proteína Precursora del Amiloide , Humanos , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Lípidos de la Membrana/metabolismo , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Línea Celular , Precursor de Proteína beta-Amiloide/metabolismo , Presenilina-1/metabolismo
10.
Cell Stem Cell ; 29(12): 1685-1702.e22, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36459969

RESUMEN

Human induced pluripotent stem cell (iPSC) lines are a powerful tool for studying development and disease, but the considerable phenotypic variation between lines makes it challenging to replicate key findings and integrate data across research groups. To address this issue, we sub-cloned candidate human iPSC lines and deeply characterized their genetic properties using whole genome sequencing, their genomic stability upon CRISPR-Cas9-based gene editing, and their phenotypic properties including differentiation to commonly used cell types. These studies identified KOLF2.1J as an all-around well-performing iPSC line. We then shared KOLF2.1J with groups around the world who tested its performance in head-to-head comparisons with their own preferred iPSC lines across a diverse range of differentiation protocols and functional assays. On the strength of these findings, we have made KOLF2.1J and its gene-edited derivative clones readily accessible to promote the standardization required for large-scale collaborative science in the stem cell field.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Diferenciación Celular , Edición Génica , Bioensayo
11.
EMBO Mol Med ; 14(9): e15377, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-35929194

RESUMEN

Lysosomes are cell organelles that degrade macromolecules to recycle their components. If lysosomal degradative function is impaired, e.g., due to mutations in lysosomal enzymes or membrane proteins, lysosomal storage diseases (LSDs) can develop. LSDs manifest often with neurodegenerative symptoms, typically starting in early childhood, and going along with a strongly reduced life expectancy and quality of life. We show here that small molecule activation of the Ca2+ -permeable endolysosomal two-pore channel 2 (TPC2) results in an amelioration of cellular phenotypes associated with LSDs such as cholesterol or lipofuscin accumulation, or the formation of abnormal vacuoles seen by electron microscopy. Rescue effects by TPC2 activation, which promotes lysosomal exocytosis and autophagy, were assessed in mucolipidosis type IV (MLIV), Niemann-Pick type C1, and Batten disease patient fibroblasts, and in neurons derived from newly generated isogenic human iPSC models for MLIV and Batten disease. For in vivo proof of concept, we tested TPC2 activation in the MLIV mouse model. In sum, our data suggest that TPC2 is a promising target for the treatment of different types of LSDs, both in vitro and in-vivo.


Asunto(s)
Enfermedades por Almacenamiento Lisosomal , Mucolipidosis , Lipofuscinosis Ceroideas Neuronales , Animales , Preescolar , Humanos , Lisosomas/metabolismo , Ratones , Mucolipidosis/genética , Mucolipidosis/metabolismo , Lipofuscinosis Ceroideas Neuronales/metabolismo , Calidad de Vida
12.
EMBO J ; 41(4): e109108, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35019161

RESUMEN

Haploinsufficiency of the progranulin (PGRN)-encoding gene (GRN) causes frontotemporal lobar degeneration (GRN-FTLD) and results in microglial hyperactivation, TREM2 activation, lysosomal dysfunction, and TDP-43 deposition. To understand the contribution of microglial hyperactivation to pathology, we used genetic and pharmacological approaches to suppress TREM2-dependent transition of microglia from a homeostatic to a disease-associated state. Trem2 deficiency in Grn KO mice reduced microglia hyperactivation. To explore antibody-mediated pharmacological modulation of TREM2-dependent microglial states, we identified antagonistic TREM2 antibodies. Treatment of macrophages from GRN-FTLD patients with these antibodies led to reduced TREM2 signaling due to its enhanced shedding. Furthermore, TREM2 antibody-treated PGRN-deficient microglia derived from human-induced pluripotent stem cells showed reduced microglial hyperactivation, TREM2 signaling, and phagocytic activity, but lysosomal dysfunction was not rescued. Similarly, lysosomal dysfunction, lipid dysregulation, and glucose hypometabolism of Grn KO mice were not rescued by TREM2 ablation. Synaptic loss and neurofilament light-chain (NfL) levels, a biomarker for neurodegeneration, were further elevated in the Grn/Trem2 KO cerebrospinal fluid (CSF). These findings suggest that TREM2-dependent microglia hyperactivation in models of GRN deficiency does not promote neurotoxicity, but rather neuroprotection.


Asunto(s)
Degeneración Lobar Frontotemporal/patología , Glicoproteínas de Membrana/metabolismo , Microglía/fisiología , Monocitos/metabolismo , Progranulinas/deficiencia , Receptores Inmunológicos/metabolismo , Animales , Anticuerpos/inmunología , Anticuerpos/farmacología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Femenino , Degeneración Lobar Frontotemporal/metabolismo , Humanos , Lisosomas/metabolismo , Lisosomas/patología , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/efectos de los fármacos , Monocitos/efectos de los fármacos , Receptores Inmunológicos/genética , Receptores Inmunológicos/inmunología , Quinasa Syk/metabolismo
13.
EMBO Mol Med ; 13(10): e13742, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34411438

RESUMEN

Batten diseases (BDs) are a group of lysosomal storage disorders characterized by seizure, visual loss, and cognitive and motor deterioration. We discovered increased levels of globotriaosylceramide (Gb3) in cellular and murine models of CLN3 and CLN7 diseases and used fluorescent-conjugated bacterial toxins to label Gb3 to develop a cell-based high content imaging (HCI) screening assay for the repurposing of FDA-approved compounds able to reduce this accumulation within BD cells. We found that tamoxifen reduced the lysosomal accumulation of Gb3 in CLN3 and CLN7 cell models, including neuronal progenitor cells (NPCs) from CLN7 patient-derived induced pluripotent stem cells (iPSC). Here, tamoxifen exerts its action through a mechanism that involves activation of the transcription factor EB (TFEB), a master gene of lysosomal function and autophagy. In vivo administration of tamoxifen to the CLN7Δex2 mouse model reduced the accumulation of Gb3 and SCMAS, decreased neuroinflammation, and improved motor coordination. These data strongly suggest that tamoxifen may be a suitable drug to treat some types of Batten disease.


Asunto(s)
Lipofuscinosis Ceroideas Neuronales , Animales , Reposicionamiento de Medicamentos , Humanos , Lisosomas , Glicoproteínas de Membrana/genética , Ratones , Chaperonas Moleculares/genética , Lipofuscinosis Ceroideas Neuronales/tratamiento farmacológico , Fenotipo , Tamoxifeno/farmacología
14.
Nat Protoc ; 16(3): 1714-1739, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33597771

RESUMEN

The recent CRISPR revolution has provided researchers with powerful tools to perform genome editing in a variety of organisms. However, recent reports indicate widespread occurrence of unintended CRISPR-induced on-target effects (OnTEs) at the edited site in mice and human induced pluripotent stem cells (iPSCs) that escape standard quality controls. By altering gene expression of targeted or neighbouring genes, OnTEs can severely affect phenotypes of CRISPR-edited cells and organisms and thus lead to data misinterpretation, which can undermine the reliability of CRISPR-based studies. Here we describe a broadly applicable framework for detecting OnTEs in genome-edited cells and organisms after non-homologous end joining-mediated and homology-directed repair-mediated editing. Our protocol enables identification of OnTEs such as large deletions, large insertions, rearrangements or loss of heterozygosity (LOH). This is achieved by subjecting genomic DNA first to quantitative genotyping PCR (qgPCR), which determines the number of intact alleles at the target site using the same PCR amplicon that has been optimized for genotyping. This combination of genotyping and quantitation makes it possible to exclude clones with monoallelic OnTEs and hemizygous editing, which are often mischaracterized as correctly edited in standard Sanger sequencing. Second, occurrence of LOH around the edited locus is detected by genotyping neighbouring single-nucleotide polymorphisms (SNPs), using either a Sanger sequencing-based method or SNP microarrays. All steps are optimized to maximize simplicity and minimize cost to promote wide dissemination and applicability across the field. The entire protocol from genomic DNA extraction to OnTE exclusion can be performed in 6-9 d.


Asunto(s)
Edición Génica/métodos , Ingeniería Genética/métodos , Polimorfismo de Nucleótido Simple/genética , Animales , Secuencia de Bases/genética , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Reparación del ADN por Unión de Extremidades/genética , Genotipo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , ARN Guía de Kinetoplastida/genética , Reproducibilidad de los Resultados
15.
Cell Rep ; 31(8): 107689, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32460021

RESUMEN

CRISPR genome editing is a promising tool for translational research but can cause undesired editing outcomes, both on target at the edited locus and off target at other genomic loci. Here, we investigate the occurrence of deleterious on-target effects (OnTEs) in human stem cells after insertion of disease-related mutations by homology-directed repair (HDR) and gene editing using non-homologous end joining (NHEJ). We identify large, mono-allelic genomic deletions and loss-of-heterozygosity escaping standard quality controls in up to 40% of edited clones. To reliably detect such events, we describe simple, low-cost, and broadly applicable quantitative genotyping PCR (qgPCR) and single-nucleotide polymorphism (SNP) genotyping-based tools and suggest their usage as additional quality controls after editing. This will help to ensure the integrity of edited loci and increase the reliability of CRISPR editing.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Edición Génica/métodos , Ingeniería Genética/métodos , Células Madre Pluripotentes Inducidas/metabolismo , Humanos
16.
Curr Opin Neurobiol ; 61: 96-104, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32112992

RESUMEN

Induced pluripotent stem-cell-based models enable investigation of pathomechanisms in disease-relevant human brain cell types and therefore offer great potential for mechanistic and translational studies on neurodegenerative disorders, such as Alzheimer's disease (AD). While current AD models allow analysis of early disease phenotypes including Aß accumulation and Tau hyperphosphorylation, they still fail to fully recapitulate later hallmarks such as protein aggregation and neurodegeneration. This impedes the identification of pathomechanisms and novel therapeutic targets. We discuss strategies to overcome these drawbacks and optimize physiological properties and translational potential of iPSC-based models by improving culture formats, increasing cellular diversity, applying genome editing, and implementing maturation and ageing paradigms.


Asunto(s)
Enfermedad de Alzheimer , Envejecimiento , Humanos , Células Madre Pluripotentes Inducidas , Fenotipo , Proteínas tau
18.
Nat Med ; 25(12): 1873-1884, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31806906

RESUMEN

Herpes simplex virus-1 (HSV-1) encephalitis (HSE) is typically sporadic. Inborn errors of TLR3- and DBR1-mediated central nervous system cell-intrinsic immunity can account for forebrain and brainstem HSE, respectively. We report five unrelated patients with forebrain HSE, each heterozygous for one of four rare variants of SNORA31, encoding a small nucleolar RNA of the H/ACA class that are predicted to direct the isomerization of uridine residues to pseudouridine in small nuclear RNA and ribosomal RNA. We show that CRISPR/Cas9-introduced bi- and monoallelic SNORA31 deletions render human pluripotent stem cell (hPSC)-derived cortical neurons susceptible to HSV-1. Accordingly, SNORA31-mutated patient hPSC-derived cortical neurons are susceptible to HSV-1, like those from TLR3- or STAT1-deficient patients. Exogenous interferon (IFN)-ß renders SNORA31- and TLR3- but not STAT1-mutated neurons resistant to HSV-1. Finally, transcriptome analysis of SNORA31-mutated neurons revealed normal responses to TLR3 and IFN-α/ß stimulation but abnormal responses to HSV-1. Human SNORA31 thus controls central nervous system neuron-intrinsic immunity to HSV-1 by a distinctive mechanism.


Asunto(s)
Encefalitis por Herpes Simple/genética , Herpesvirus Humano 1/genética , Neuronas/inmunología , ARN Nucleolar Pequeño/genética , Adulto , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/virología , Preescolar , Encefalitis por Herpes Simple/inmunología , Encefalitis por Herpes Simple/patología , Encefalitis por Herpes Simple/virología , Femenino , Predisposición Genética a la Enfermedad , Herpesvirus Humano 1/inmunología , Herpesvirus Humano 1/patogenicidad , Humanos , Inmunidad/genética , Lactante , Masculino , Metagenoma/genética , Metagenoma/inmunología , Persona de Mediana Edad , Neuronas/virología , ARN Nucleolar Pequeño/inmunología
19.
Neuron ; 104(2): 256-270.e5, 2019 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-31416668

RESUMEN

Familial Alzheimer's disease (fAD) results from mutations in the amyloid precursor protein (APP) and presenilin (PSEN1 and PSEN2) genes. Here we leveraged recent advances in induced pluripotent stem cell (iPSC) and CRISPR/Cas9 genome editing technologies to generate a panel of isogenic knockin human iPSC lines carrying APP and/or PSEN1 mutations. Global transcriptomic and translatomic profiling revealed that fAD mutations have overlapping effects on the expression of AD-related and endocytosis-associated genes. Mutant neurons also increased Rab5+ early endosome size. APP and PSEN1 mutations had discordant effects on Aß production but similar effects on APP ß C-terminal fragments (ß-CTFs), which accumulate in all mutant neurons. Importantly, endosomal dysfunction correlated with accumulation of ß-CTFs, not Aß, and could be rescued by pharmacological modulation of ß-secretase (BACE). These data display the utility of our mutant iPSCs in studying AD-related phenotypes in a non-overexpression human-based system and support mounting evidence that ß-CTF may be critical in AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Endocitosis/genética , Endosomas/metabolismo , Neuronas/metabolismo , Fragmentos de Péptidos/metabolismo , Presenilina-1/genética , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide , Ácido Aspártico Endopeptidasas , Sistemas CRISPR-Cas , Línea Celular , Endosomas/patología , Perfilación de la Expresión Génica , Técnicas de Sustitución del Gen , Heterocigoto , Homocigoto , Humanos , Células Madre Pluripotentes Inducidas , Mutación , Tamaño de los Orgánulos , Fenotipo , Proteómica , Proteínas de Unión al GTP rab5/metabolismo
20.
Mol Neurobiol ; 56(12): 8220-8236, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31203573

RESUMEN

Adult neurogenesis defects have been demonstrated in the brains of Alzheimer's disease (AD) patients. The neurogenesis impairment is an early critical event in the course of familiar AD (FAD) associated with neuronal loss. It was suggested that neurologic dysfunction in AD may be caused by impaired functioning of hippocampal neural stem cells (NSCs). Multiple metabolic and structural abnormalities in neural mitochondria have long been suspected to play a critical role in AD pathophysiology. We hypothesize that the cause of such abnormalities could be defective elimination of damaged mitochondria. In the present study, we evaluated mitophagy efficacy in a cellular AD model, hiPSC-derived NSCs harboring the FAD-associated PS1 M146L mutation. We found several mitochondrial respiratory chain defects such as lower expression levels of cytochrome c oxidase (complex IV), cytochrome c reductase (complex III), succinate dehydrogenase (complex II), NADH:CoQ reductase (complex I), and also ATP synthase (complex V), most of which had been previously associated with AD. The mitochondrial network morphology and abundance in these cells was aberrant. This was associated with a marked mitophagy failure stemming from autophagy induction blockage, and deregulation of the expression of proteins involved in mitochondrial dynamics. We show that treating these cells with autophagy-stimulating drug bexarotene restored autophagy and compensated mitochondrial anomalies in PS1 M146L NSCs, by enhancing the clearance of mitochondria. Our data support the hypothesis that pharmacologically induced mitophagy enhancement is a relevant and novel therapeutic strategy for the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Autofagia/efectos de los fármacos , Bexaroteno/farmacología , Células Madre Pluripotentes Inducidas/patología , Mitofagia/efectos de los fármacos , Células-Madre Neurales/patología , Presenilina-1/genética , ADN Mitocondrial/genética , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA