Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mol Ther Nucleic Acids ; 35(2): 102173, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38617973

RESUMEN

Epigenetic processes involving long non-coding RNAs regulate endothelial gene expression. However, the underlying regulatory mechanisms causing endothelial dysfunction remain to be elucidated. Enhancer of zeste homolog 2 (EZH2) is an important rheostat of histone H3K27 trimethylation (H3K27me3) that represses endothelial targets, but EZH2 RNA binding capacity and EZH2:RNA functional interactions have not been explored in post-ischemic angiogenesis. We used formaldehyde/UV-assisted crosslinking ligation and sequencing of hybrids and identified a new role for maternally expressed gene 3 (MEG3). MEG3 formed the predominant RNA:RNA hybrid structures in endothelial cells. Moreover, MEG3:EZH2 assists recruitment onto chromatin. By EZH2-chromatin immunoprecipitation, following MEG3 depletion, we demonstrated that MEG3 controls recruitment of EZH2/H3K27me3 onto integrin subunit alpha4 (ITGA4) promoter. Both MEG3 knockdown or EZH2 inhibition (A-395) promoted ITGA4 expression and improved endothelial cell migration and adhesion to fibronectin in vitro. The A-395 inhibitor re-directed MEG3-assisted chromatin remodeling, offering a direct therapeutic benefit by increasing endothelial function and resilience. This approach subsequently increased the expression of ITGA4 in arterioles following ischemic injury in mice, thus promoting arteriogenesis. Our findings show a context-specific role for MEG3 in guiding EZH2 to repress ITGA4. Novel therapeutic strategies could antagonize MEG3:EZH2 interaction for pre-clinical studies.

2.
EMBO Rep ; 21(7): e48192, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32337819

RESUMEN

Autophagy is an essential cellular quality control process that has emerged as a critical one for vascular homeostasis. Here, we show that trichoplein (TCHP) links autophagy with endothelial cell (EC) function. TCHP localizes to centriolar satellites, where it binds and stabilizes PCM1. Loss of TCHP leads to delocalization and proteasome-dependent degradation of PCM1, further resulting in degradation of PCM1's binding partner GABARAP. Autophagic flux under basal conditions is impaired in THCP-depleted ECs, and SQSTM1/p62 (p62) accumulates. We further show that TCHP promotes autophagosome maturation and efficient clearance of p62 within lysosomes, without affecting their degradative capacity. Reduced TCHP and high p62 levels are detected in primary ECs from patients with coronary artery disease. This phenotype correlates with impaired EC function and can be ameliorated by NF-κB inhibition. Moreover, Tchp knock-out mice accumulate of p62 in the heart and cardiac vessels correlating with reduced cardiac vascularization. Taken together, our data reveal that TCHP regulates endothelial cell function via an autophagy-mediated mechanism.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Autofagia , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular , Centriolos/metabolismo , Células Endoteliales/metabolismo , Humanos , Ratones , FN-kappa B , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo
3.
Mol Ther ; 26(8): 1996-2007, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29843955

RESUMEN

Transforming growth factor beta (TGF-ß) is crucial for regulation of the endothelial cell (EC) homeostasis. Perturbation of TGF-ß signaling leads to pathological conditions in the vasculature, causing cardiovascular disease and fibrotic disorders. The TGF-ß pathway is critical in endothelial-to-mesenchymal transition (EndMT), but a gap remains in our understanding of the regulation of TGF-ß and related signaling in the endothelium. This study applied a gain- and loss-of function approach and an in vivo model of skin wound healing to demonstrate that miR-148b regulates TGF-ß signaling and has a key role in EndMT, targeting TGFB2 and SMAD2. Overexpression of miR-148b increased EC migration, proliferation, and angiogenesis, whereas its inhibition promoted EndMT. Cytokine challenge decreased miR-148b levels in ECs while promoting EndMT through the regulation of SMAD2. Finally, in a mouse model of skin wound healing, delivery of miR-148b mimics promoted wound vascularization and accelerated closure. In contrast, inhibition of miR-148b enhanced EndMT in wounds, resulting in impaired wound closure that was reversed by SMAD2 silencing. Together, these results demonstrate for the first time that miR-148b is a key factor controlling EndMT and vascularization. This opens new avenues for therapeutic application of miR-148b in vascular and tissue repair.


Asunto(s)
MicroARNs/genética , Neovascularización Fisiológica , Transducción de Señal , Piel/lesiones , Cicatrización de Heridas , Animales , Movimiento Celular , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Piel/metabolismo , Proteína Smad2/metabolismo , Factor de Crecimiento Transformador beta , Factor de Crecimiento Transformador beta2/metabolismo
4.
BMC Neurosci ; 17(1): 76, 2016 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-27887593

RESUMEN

BACKGROUND: The transcription factor Barhl2 is an antiproneural transcription factor with roles in neuronal differentiation. The functions of its homologue in Drosophila development are better understood than its functions in mammalian brain development. Existing evidence suggests that its expression in the embryonic forebrain of the mouse is regional and may complement that of another transcription factor that is important for forebrain development, Pax6. The aim of this study is to provide a more detailed description of the Barhl2 expression pattern in the embryonic forebrain than is currently available, to relate its expression domains to those of Pax6 and to examine the effects of Pax6 loss on Barhl2 expression. RESULTS: We found that Barhl2 is expressed in the developing diencephalon from the time of anterior neural tube closure. Its expression initially overlaps that of Pax6 in a central region of the alar diencephalon but over the following days their domains of expression become complementary in most forebrain regions. The exceptions are the thalamus and pretectum, where countergradients of Pax6 and Barhl2 expression are established by embryonic day 12.5, before overall Pax6 levels in these regions decline greatly while Barhl2 levels remain relatively high. We found that Barhl2 expression becomes upregulated in specifically the thalamus and pretectum in Pax6-null mice. CONCLUSIONS: The region-specific expression pattern of Barhl2 makes it likely to be an important player in the development of region-specific differences in embryonic mouse forebrain. Repression of its expression in the thalamus and pretectum by Pax6 may be crucial for allowing proneural factors to promote normal neuronal differentiation in this region.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Factor de Transcripción PAX6/metabolismo , Prosencéfalo/embriología , Prosencéfalo/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica , Hibridación in Situ , Ratones Noqueados , Microscopía Confocal , Microscopía Fluorescente , Factor de Transcripción PAX6/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA