Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39373914

RESUMEN

PURPOSE: This study aimed to investigate correlation between the presence of endolymphatic hydrops(EH) and factors such as causes of hearing loss, patient age, duration of deafness, and results of vestibular function tests. METHODS: We retrospectively reviewed medical charts of 128 ears of cochlear implantees who were not considered relevant to Meniere's disease. RESULTS: When comparing group with genetic variants of GJB2, SLC26A4, LMX1A and other genetic mutation group, the proportion of vestibular EH and cochlear EH found in group with genetic variants of GJB2, SLC26A4, LMX1A was significantly higher than group with other genetic etiology (p < 0.01) or the group with all the other causes of hearing loss (p < 0.01). The rate of vestibular and cochlear EH detection was higher in younger patients (41.5% and 35.4%) than in older patients (25.4% and 20.6%). A higher ratio of vestibular and cochlear EH was observed in patients with a longer duration of deafness (37.5% and 31.3%) than those with a shorter duration of deafness (29.7% and 25.0%). The group with vestibular EH showed a higher incidence of abnormal findings in the caloric test (42.9%) than the group without vestibular EH (28.2%). CONCLUSION: Patients with genetic variants of GJB2, SLC26A4, LMX1A, younger patients, those with longer deaf durations showed a higher prevalence of vestibular and cochlear EH, implying EH appears to be formed as a developmental disorder in association with a certain set of genetic variants, rather than a phenotypic marker as a result of severe to profound hearing loss.

2.
Comput Biol Med ; 183: 109217, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39366142

RESUMEN

BACKGROUND: Recently, stress has been recognized as a key factor in the emergence of individual and social issues. Numerous attempts have been made to develop sensor-augmented psychological stress detection techniques, although existing methods are often impractical or overly subjective. To overcome these limitations, we acquired a dataset utilizing both wireless wearable multimodal sensors and salivary cortisol tests for supervised learning. We also developed a novel deep neural network (DNN) model that maximizes the benefits of sensor fusion. METHOD: We devised a DNN involving a shuffled efficient channel attention (ECA) module called a shuffled ECA-Net, which achieves advanced feature-level sensor fusion by considering inter-modality relationships. Through an experiment involving salivary cortisol tests on 26 participants, we acquired multiple bio-signals including electrocardiograms, respiratory waveforms, and electrogastrograms in both relaxed and stressed mental states. A training dataset was generated from the obtained data. Using the dataset, our proposed model was optimized and evaluated ten times through five-fold cross-validation, while varying a random seed. RESULTS: Our proposed model achieved acceptable performance in stress detection, showing 0.916 accuracy, 0.917 sensitivity, 0.916 specificity, 0.914 F1-score, and 0.964 area under the receiver operating characteristic curve (AUROC). Furthermore, we demonstrated that combining multiple bio-signals with a shuffled ECA module can more accurately detect psychological stress. CONCLUSIONS: We believe that our proposed model, coupled with the evidence for the viability of multimodal sensor fusion and a shuffled ECA-Net, would significantly contribute to the resolution of stress-related issues.

3.
Heliyon ; 10(19): e38390, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39398066

RESUMEN

The study aimed to analyze the mechanical properties, precipitation strengthening, and microstructure of Al-Ni-Cu alloys to understand their enhanced characteristics. Additionally, the damping behavior was examined using a dynamic mechanical analyzer across a continuous heating temperature range with frequencies from 0.5 to 15 Hz. The experimental results indicate that the Al-Ni eutectic alloy, which exhibits an ultrafine Al3Ni intermetallic fiber-reinforced Al matrix, transitions to a dendritic-ultrafine eutectic composite structure. The Cu-containing alloys exhibit two distinct primary phases: α-Al and Al-Ni-Cu ternary intermetallic compounds. The eutectic matrix transforms from Al-Al3Ni to Al-Al7Cu4Ni, and subsequently to Al-Al2Cu. These microstructural evolutions result in an enhancement of the tensile yield strength from 170 MPa to 440 MPa, with additional hardening achieved through aging-induced precipitation. Moreover, the damping capacity improves with the addition of Cu at elevated temperatures, and there is an increase in frequency dependence. This paper will discuss the microstructural features, mechanical properties, deformation behaviors, and damping properties in detail.

4.
Micromachines (Basel) ; 15(9)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39337726

RESUMEN

This paper presents a novel power-efficient topology for receivers in short-range LiDAR sensors. Conventionally, LiDAR sensors exploit complex time-to-digital converters (TDCs) for time-of-flight (ToF) distance measurements, thereby frequently leading to intricate circuit designs and persistent walk error issues. However, this work features a fully differential trans-impedance amplifier with on-chip avalanche photodiodes as optical detectors so that the need of the following post-amplifiers and output buffers can be eliminated, thus considerably reducing power consumption. Also, the combination of amplitude-to-voltage (A2V) and time-to-voltage (T2V) converters are exploited to replace the complicated TDC circuit. The A2V converter efficiently processes weak input photocurrents ranging from 1 to 50 µApp which corresponds to a maximum distance of 22.8 m, while the T2V converter handles relatively larger photocurrents from 40 µApp to 5.8 mApp for distances as short as 30 cm. The post-layout simulations confirm that the proposed LiDAR receiver can detect optical pulses over the range of 0.3 to 22.8 m with a low power dissipation of 10 mW from a single 1.8 V supply. This topology offers significant improvements in simplifying the receiver design and reducing the power consumption, providing a more efficient and accurate solution that is highly suitable for short-range LiDAR sensor applications.

5.
J Korean Assoc Oral Maxillofac Surg ; 50(4): 216-221, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39211970

RESUMEN

Objectives: This study aimed to develop and validate a model to predict the need for intensive care unit (ICU) admission in patients with dental infections using an automated machine learning (ML) program called H2O-AutoML. Materials and Methods: Two models were created using only the information available at the initial examination. Model 1 was parameterized with only clinical symptoms and blood tests, excluding contrast-enhanced multi-detector computed tomography (MDCT) images available at the initial visit, whereas model 2 was created with the addition of the MDCT information to the model 1 parameters. Although model 2 was expected to be superior to model 1, we wanted to independently determine this conclusion. A total of 210 patients who visited the Department of Oral and Maxillofacial Surgery at the Dankook University Dental Hospital from March 2013 to August 2023 was included in this study. The patients' demographic characteristics (sex, age, and place of residence), systemic factors (hypertension, diabetes mellitus [DM], kidney disease, liver disease, heart disease, anticoagulation therapy, and osteoporosis), local factors (smoking status, site of infection, postoperative wound infection, dysphagia, odynophagia, and trismus), and factors known from initial blood tests were obtained from their medical charts and retrospectively reviewed. Results: The generalized linear model algorithm provided the best diagnostic accuracy, with an area under the receiver operating characteristic values of 0.8289 in model 1 and 0.8415 in model 2. In both models, the C-reactive protein level was the most important variable, followed by DM. Conclusion: This study provides unprecedented data on the use of ML for successful prediction of ICU admission based on initial examination results. These findings will considerably contribute to the development of the field of dentistry, especially oral and maxillofacial surgery.

6.
Brain Stimul ; 17(4): 826-835, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38997106

RESUMEN

BACKGROUND: Traditional pharmacological interventions are well tolerated in the management of elevated blood pressure (BP) for individuals with resistant hypertension. Although neuromodulation has been investigated as an alternative solution, its open-loop (OL) modality cannot follow the patient's physiological state. In fact, neuromodulation for controlling highly fluctuating BP necessitates a closed-loop (CL) stimulation modality based on biomarkers to monitor the patient's continuously varying physiological state. OBJECTIVE: By leveraging its intuitive linkage with BP responses in ongoing efforts aimed at developing a CL system to enhance temporal BP reduction effect, this study proposes a CL neuromodulation modality that controls nucleus tractus solitarius (NTS) activity to effectively reduce BP, thus reflecting continuously varying physiological states. METHOD: While performing neurostimulation targeting the NTS in the rat model, the arterial BP response and neural activity of the NTS were simultaneously measured. To evaluate the temporal BP response effect of CL neurostimulation, OL (constant parameter; 20 Hz, 200 µA) and CL (Initial parameter; 11 Hz, 112 µA) stimulation protocols were performed with stimulation 180 s and rest 600 s, respectively, and examined NTS activity and BP response to the protocols. RESULTS: In-vivo experiments for OL versus CL protocol for direct NTS stimulation in rats demonstrated an enhancement in temporal BP reduction via the CL modulation of NTS activity. CONCLUSION: This study proposes a CL stimulation modality that enhances the effectiveness of BP control using a feedback control algorithm based on neural signals, thereby suggesting a new approach to antihypertensive neuromodulation.


Asunto(s)
Presión Sanguínea , Núcleo Solitario , Animales , Ratas , Presión Sanguínea/fisiología , Presión Sanguínea/efectos de los fármacos , Núcleo Solitario/fisiología , Masculino , Ratas Sprague-Dawley , Tronco Encefálico/fisiología , Hipertensión/terapia , Hipertensión/fisiopatología , Terapia por Estimulación Eléctrica/métodos , Terapia por Estimulación Eléctrica/instrumentación
7.
Nat Commun ; 15(1): 5839, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992011

RESUMEN

3D printing has been widely used for on-demand prototyping of complex three-dimensional structures. In biomedical applications, PEDOT:PSS has emerged as a promising material in versatile bioelectronics due to its tissue-like mechanical properties and suitable electrical properties. However, previously developed PEDOT:PSS inks have not been able to fully utilize the advantages of commercial 3D printing due to its long post treatment times, difficulty in high aspect ratio printing, and low conductivity. We propose a one-shot strategy for the fabrication of PEDOT:PSS ink that is able to simultaneously achieve on-demand biocompatibility (no post treatment), structural integrity during 3D printing for tall three-dimensional structures, and high conductivity for rapid-prototyping. By using ionic liquid-facilitated PEDOT:PSS colloidal stacking induced by a centrifugal protocol, a viscoplastic PEDOT:PSS-ionic liquid colloidal (PILC) ink was developed. PILC inks exhibit high-aspect ratio vertical stacking, omnidirectional printability for generating suspended architectures, high conductivity (~286 S/cm), and high-resolution printing (~50 µm). We demonstrate the on-demand and versatile applicability of PILC inks through the fabrication of 3D circuit boards, on-skin physiological signal monitoring e-tattoos, and implantable bioelectronics (opto-electrocorticography recording, low voltage sciatic nerve stimulation and recording from deeper brain layers via 3D vertical spike arrays).


Asunto(s)
Materiales Biocompatibles , Coloides , Conductividad Eléctrica , Líquidos Iónicos , Poliestirenos , Impresión Tridimensional , Líquidos Iónicos/química , Coloides/química , Materiales Biocompatibles/química , Animales , Poliestirenos/química , Ratas , Tinta , Polímeros/química , Tiofenos/química , Neuronas/fisiología , Compuestos Bicíclicos Heterocíclicos con Puentes/química
8.
Sensors (Basel) ; 24(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38894305

RESUMEN

This paper presents a current-mode VCSEL driver (CMVD) implemented using 180 nm CMOS technology for application in short-range LiDAR sensors, in which current-steering logic is suggested to deliver modulation currents from 0.1 to 10 mApp and a bias current of 0.1 mA simultaneously to the VCSEL diode. For the simulations, the VCSEL diode is modeled with a 1.6 V forward-bias voltage and a 50 Ω series resistor. The post-layout simulations of the proposed CMVD clearly demonstrate large output pulses and eye-diagrams. Measurements of the CMVD demonstrate large output pulses, confirming the simulation results. The chip consumes a maximum of 11 mW from a 3.3 V supply, and the core occupies an area of 0.1 mm2.

9.
Adv Mater ; 36(34): e2400364, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38717016

RESUMEN

Left ventricular twist is influenced by the unique oriented structure of myocardial fibers. Replicating this intricate structural-functional relationship in an in vitro heart model remains challenging, mainly due to the difficulties in achieving a complex structure with synchrony between layers. This study introduces a novel approach through the utilization of bioprinting-assisted tissue assembly (BATA)-a synergistic integration of bioprinting and tissue assembly strategies. By flexibly manufacturing tissue modules and assembly platforms, BATA can create structures that traditional methods find difficult to achieve. This approach integrates engineered heart tissue (EHT) modules, each with intrinsic functional and structural characteristics, into a layered, multi-oriented tissue in a controlled manner. EHTs assembled in different orientations exhibit various contractile forces and electrical signal patterns. The BATA is capable of constructing complex myocardial fiber orientations within a chamber-like structure (MoCha). MoCha replicates the native cardiac architecture by exhibiting three layers and three alignment directions, and it reproduces the left ventricular twist by exhibiting synchronized contraction between layers and mimicking the native cardiac architecture. The potential of BATA extends to engineering tissues capable of constructing and functioning as complete organs on a large scale. This advancement holds the promise of realizing future organ-on-demand technology.


Asunto(s)
Bioimpresión , Ventrículos Cardíacos , Ingeniería de Tejidos , Ingeniería de Tejidos/métodos , Bioimpresión/métodos , Animales , Andamios del Tejido/química , Miocardio/citología , Miocardio/metabolismo , Humanos , Miocitos Cardíacos/citología
10.
Biosens Bioelectron ; 260: 116420, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38805890

RESUMEN

Bioengineered hearts, which include single cardiomyocytes, engineered heart tissue, and chamber-like models, generate various biosignals, such as contractility, electrophysiological, and volume-pressure dynamic signals. Monitoring changes in these signals is crucial for understanding the mechanisms of disease progression and developing potential treatments. However, current methodologies face challenges in the continuous monitoring of bioengineered hearts over extended periods and typically require sacrificing the sample post-experiment, thereby limiting in-depth analysis. Thus, a biohybrid system consisting of living and nonliving components was developed. This system primarily features heart tissue alongside nonliving elements designed to support or comprehend its functionality. Biohybrid printing technology has simplified the creation of such systems and facilitated the development of various functional biohybrid systems capable of measuring or even regulating multiple functions, such as pacemakers, which demonstrates its versatility and potential applications. The future of biohybrid printing appears promising, with the ongoing exploration of its capabilities and potential directions for advancement.


Asunto(s)
Técnicas Biosensibles , Miocitos Cardíacos , Impresión Tridimensional , Ingeniería de Tejidos , Humanos , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Ingeniería de Tejidos/métodos , Animales , Bioimpresión/métodos , Corazón/fisiología
11.
Adv Healthc Mater ; 13(18): e2400043, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38569577

RESUMEN

Biomimetic stress-relaxing hydrogels with reversible crosslinks attract significant attention for stem cell tissue regeneration compared with elastic hydrogels. However, stress-relaxing hyaluronic acid (HA)-based hydrogels fabricated using conventional technologies lack stability, biocompatibility, and mechanical tunability. Here, it is aimed to address these challenges by incorporating calcium or phosphate components into the HA backbone, which allows reversible crosslinking of HA with alginate to form interpenetrating networks, offering stability and mechanical tunability for mimicking cartilage. Diverse stress-relaxing hydrogels (τ1/2; SR50, 60-2000 s) are successfully prepared at ≈3 kPa stiffness with self-healing and shear-thinning abilities, favoring hydrogel injection. In vitro cell experiments with RNA sequencing analysis demonstrate that hydrogels tune chondrogenesis in a biphasic manner (hyaline or calcified) depending on the stress-relaxation properties and phosphate components. In vivo studies confirm the potential for biphasic chondrogenesis. These results indicate that the proposed stress-relaxing HA-based hydrogel with biphasic chondrogenesis (hyaline or calcified) is a promising material for cartilage regeneration.


Asunto(s)
Cartílago , Condrogénesis , Ácido Hialurónico , Hidrogeles , Regeneración , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Condrogénesis/efectos de los fármacos , Animales , Regeneración/efectos de los fármacos , Cartílago/efectos de los fármacos , Cartílago/fisiología , Humanos , Estrés Mecánico , Ingeniería de Tejidos/métodos , Ratones
12.
Acta Otolaryngol ; 144(2): 91-95, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38469743

RESUMEN

BACKGROUND: There are two types of speech processors used in CI devices: behind-the-ear (BTE) and off-the-ear (OTE). OBJECTIVES: This study aimed to investigate the characteristics of patients and revision cases in relation to the type of speech processors. MATERIALS AND METHODS: A retrospective review of 452 ears that underwent CI was performed. RESULTS: Children with severe inner ear anomalies (91.7%) more frequently preferred BTE speech processors than those without severe inner ear anomalies (p = .000). The magnet strength used in OTE speech processor users was significantly higher than in BTE speech processor users (p = .002). In cochlear implantees who underwent surgery before 12 months of age, the magnet strength in the revision group was greater than in the non-revision group (p = .025). CONCLUSIONS AND SIGNIFICANCE: Overall, our findings suggest factors to consider when choosing the type of speech processor and modifying the magnet strength of the implant device. The choice between BTE and OTE speech processors led to different required magnet strengths, contributing to the occurrence of skin flap inflammation.


Asunto(s)
Implantes Cocleares , Centros de Atención Terciaria , Humanos , Estudios Retrospectivos , Masculino , Femenino , Preescolar , Niño , Lactante , Adolescente , Adulto , Implantación Coclear , Adulto Joven , Persona de Mediana Edad , Reoperación
13.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38338991

RESUMEN

Side streams and byproducts of food are established sources of natural ingredients in cosmetics. In the present study, we obtained upcycled low-molecular-weight anionic peptides (LMAPs) using byproducts of the post-yuzu-juicing process by employing an enzyme derived from Bacillus sp. For the first time, we isolated anionic peptides less than 500 Da in molecular weight from Citrus junos TANAKA seeds via hydrolysis using this enzyme. The protective effect of LMAPs against UVR-induced photoaging was evaluated using a reconstructed skin tissue (RST) model and keratinocytes. The LMAPs protected the keratinocytes by scavenging intracellular reactive oxygen species and by reducing the levels of paracrine cytokines (IL-6 and TNF-α) in UVR (UVA 2 J/cm2 and UVB 15 mJ/cm2)-irradiated keratinocytes. Additionally, the increase in melanin synthesis and TRP-2 expression in RST caused by UVR was significantly inhibited by LMAP treatment. This treatment strongly induced the expression of filaggrin and laminin-5 in UVR-irradiated RST. It also increased type I collagen expression in the dermal region and in fibroblasts in vitro. These results suggest that a hydrolytic system using the enzyme derived from Bacillus sp. can be used for the commercial production of LMAPs from food byproducts and that these LMAPs can be effective ingredients for improving photoaging-induced skin diseases.


Asunto(s)
Citrus , Envejecimiento de la Piel , Enfermedades de la Piel , Piel/metabolismo , Citocinas/metabolismo , Enfermedades de la Piel/metabolismo , Rayos Ultravioleta/efectos adversos , Fibroblastos/metabolismo
14.
Clin Exp Otorhinolaryngol ; 17(1): 46-55, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326998

RESUMEN

OBJECTIVES: The recent expansion of eligibility for cochlear implantation (CI) by the U.S. Food and Drug Administration (FDA) to include infants as young as 9 months has reignited debates concerning the clinically appropriate cut-off age for pediatric CI. Our study compared the early postoperative trajectories of receptive and expressive language development in children who received CI before 9 months of age with those who received it between 9 and 12 months. This study involved a unique pediatric cohort with documented etiology, where the timing of CI was based on objective criteria and efforts were made to minimize the influence of parental socioeconomic status. METHODS: A retrospective review of 98 pediatric implantees recruited at a tertiary referral center was conducted. The timing of CI was based on auditory and language criteria focused on the extent of delay corresponding to the bottom 1st percentile of language development among age-matched controls, with patients categorized into very early (CI at <9 months), early (CI at 9-12 months) and delayed (CI at 12-18 months) CI groups. Postoperative receptive/expressive language development was assessed using the Sequenced Language Scale for Infants receptive and expressive standardized scores and percentiles. RESULTS: Only the very early CI group showed significant improvements in receptive language starting at 3 months post-CI, aligning with normal-hearing peers by 9 months and maintaining this level until age 2 years. During this period (<2 years), all improvements were more pronounced in receptive language than in expressive language. CONCLUSION: CI before 9 months of age significantly improved receptive language development compared to later CI, with improvements sustained at least up to the age of 2. This study supports the consideration of earlier CI, beyond pediatric Food and Drug Administration labeling criteria (>9 months), in children with profound deafness who have a clear deafness etiology and language development delays (<1st percentile).

15.
Adv Mater ; 36(2): e2307194, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37884338

RESUMEN

In implantable bioelectronics, which aim for semipermanent use of devices, biosafe energy sources and packaging materials to protect devices are essential elements. However, research so far has been conducted in a direction where they cannot coexist. Here, the development of capacitance-matched triboelectric implants driven is reported by ultrasound under 500 mW cm-2 safe intensity and realize a battery-free, miniatured, and wireless neurostimulator with full titanium (Ti) packaging. The triboelectric implant with high dielectric composite, which has ultralow output impedance, can efficiently deliver sufficient power to generate the stimulation pulse without an energy-storing battery, despite ultrasound attenuation due to the Ti, and has the highest energy transmission efficiency among those reported so far. In vivo study using a rat model demonstrated that the proposed device system is an effective solution for relieving urinary symptoms. These achievements provide a significant step toward permanently implantable devices for controlling human organs and treating various diseases.


Asunto(s)
Suministros de Energía Eléctrica , Prótesis e Implantes , Humanos , Ratas , Animales , Ultrasonografía , Capacidad Eléctrica
16.
Curr Issues Mol Biol ; 45(10): 7721-7733, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37886931

RESUMEN

This study addresses the propagation challenges faced by 'Shine Muscat', a newly introduced premium grapevine cultivar in South Korea, where multiple viral infections pose considerable economic loss. The primary objective was to establish a robust in vitro propagation method for producing disease-free grapes and to identify effective plant growth regulators to facilitate large-scale mass cultivation. After experimentation, 2.0 µM 6-benzyladenine (BA) exhibited superior shoot formation in the Murashige and Skoog medium compared with kinetin and thidiazuron. Conversely, α-naphthaleneacetic acid (NAA) hindered shoot growth and induced callus formation, while indole-3-butyric acid (IBA) and indole-3-acetic acid (IAA) demonstrated favorable root formation, with IBA showing better results overall. Furthermore, inter simple sequence repeat analysis confirmed the genetic stability of in vitro-cultivated seedlings using 2.0 µM BA and 1.0 µM IBA, validating the suitability of the developed propagation method for generating disease-free 'Shine Muscat' grapes. These findings offer promising prospects for commercial grape cultivation, ensuring a consistent supply of healthy grapes in the market.

17.
Nanomaterials (Basel) ; 13(18)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37764589

RESUMEN

Red color conversion materials have often been used in conventional white LEDs (light-emitting diodes) to enhance the insufficient deep-red component and thus improve the color-rendering property. Quantum dots (QDs) are one of the candidates for this due to their flexibility in controlling the emission wavelength, which is attributed to the quantum confinement effect. Two types of remote QD components, i.e., QD films and QD caps, were prepared and applied to conventional white LED illumination to improve the color-rendering properties. Thanks to the red component near 630 nm caused by the QD components, the color rendering indices (CRIs) of both Ra and R9 could be increased to over 95. It was found that both the diffusing nature of the reflector and the light recycling process in the vertical cavity between the bottom reflector and the top optical films play important roles in improving the color conversion efficiency of remote QD components. The present study showed that the proper application of remote QDs combined with a suitable optical cavity can control the correlated color temperature of the illumination over a wide range, thus realizing different color appearances of white LED illumination. In addition, a high CRI of over 95 could be achieved due to the sufficient excitation from fewer QDs, due to the strong optical cavity effect.

18.
Adv Sci (Weinh) ; 10(32): e2303395, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37727069

RESUMEN

Advancing the technologies for cellular reprogramming with high efficiency has significant impact on regenerative therapy, disease modeling, and drug discovery. Biophysical cues can tune the cell fate, yet the precise role of external physical forces during reprogramming remains elusive. Here the authors show that temporal cyclic-stretching of fibroblasts significantly enhances the efficiency of induced pluripotent stem cell (iPSC) production. Generated iPSCs are proven to express pluripotency markers and exhibit in vivo functionality. Bulk RNA-sequencing reveales that cyclic-stretching enhances biological characteristics required for pluripotency acquisition, including increased cell division and mesenchymal-epithelial transition. Of note, cyclic-stretching activates key mechanosensitive molecules (integrins, perinuclear actins, nesprin-2, and YAP), across the cytoskeletal-to-nuclear space. Furthermore, stretch-mediated cytoskeletal-nuclear mechano-coupling leads to altered epigenetic modifications, mainly downregulation in H3K9 methylation, and its global gene occupancy change, as revealed by genome-wide ChIP-sequencing and pharmacological inhibition tests. Single cell RNA-sequencing further identifies subcluster of mechano-responsive iPSCs and key epigenetic modifier in stretched cells. Collectively, cyclic-stretching activates iPSC reprogramming through mechanotransduction process and epigenetic changes accompanied by altered occupancy of mechanosensitive genes. This study highlights the strong link between external physical forces with subsequent mechanotransduction process and the epigenetic changes with expression of related genes in cellular reprogramming, holding substantial implications in the field of cell biology, tissue engineering, and regenerative medicine.


Asunto(s)
Células Madre Pluripotentes Inducidas , Mecanotransducción Celular , Reprogramación Celular/genética , Células Madre Pluripotentes Inducidas/metabolismo , Epigénesis Genética , ARN/metabolismo
19.
Artículo en Inglés | MEDLINE | ID: mdl-37708012

RESUMEN

Spinal cord stimulation (SCS) is an emerging therapeutic option for patients with neuropathic pain due to spinal cord injury (SCI). Numerous studies on pain relief effects with SCS have been conducted and demonstrated promising results while the mechanisms of analgesic effect during SCS remain unclear. However, an experimental system that enables large-scale long-term animal studies is still an unmet need for those mechanistic studies. This study proposed a fully wireless neurostimulation system that can efficiently support a long-term animal study for neuropathic pain relief. The developed system consists of an implantable stimulator, an animal cage with an external charging coil, and a wireless communication interface. The proposed device has the feature of remotely controlling stimulation parameters via radio-frequency (RF) communication and wirelessly charging via magnetic induction in freely moving rats. Users can program stimulation parameters such as pulse width, intensity, and duration through an interface on a computer. The stimulator was packaged with biocompatible epoxy to ensure long-term durability under in vivo conditions. Animal experiments using SCI rats were conducted to demonstrate the functionality of the device, including long-term usability and therapeutic effects. The developed system can be tailored to individual user needs with commercially available components, thus providing a cost-effective solution for large-scale long-term animal studies on neuropathic pain relief.


Asunto(s)
Neuralgia , Traumatismos de la Médula Espinal , Humanos , Animales , Ratas , Prótesis e Implantes , Comunicación , Frecuencia Cardíaca , Estudios Longitudinales , Neuralgia/terapia
20.
Diabetes Metab J ; 47(6): 826-836, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37614025

RESUMEN

BACKGRUOUND: There was limited evidence to evaluate the association between lifestyle habits and continuous glucose monitoring (CGM) metrics. Thus, we aimed to depict the behavioral and metabolic determinants of CGM metrics in insulin-treated patients with type 2 diabetes mellitus (T2DM). METHODS: This is a prospective observational study. We analyzed data from 122 insulin-treated patients with T2DM. Participants wore Dexcom G6 and Fitbit, and diet information was identified for 10 days. Multivariate-adjusted logistic regression analysis was performed for the simultaneous achievement of CGM-based targets, defined by the percentage of time in terms of hyper, hypoglycemia and glycemic variability (GV). Intake of macronutrients and fiber, step counts, sleep, postprandial C-peptide-to-glucose ratio (PCGR), information about glucose lowering medications and metabolic factors were added to the analyses. Additionally, we evaluated the impact of the distribution of energy and macronutrient during a day, and snack consumption on CGM metrics. RESULTS: Logistic regression analysis revealed that female, participants with high PCGR, low glycosylated hemoglobin (HbA1c) and daytime step count had a higher probability of achieving all targets based on CGM (odds ratios [95% confidence intervals] which were 0.24 [0.09 to 0.65], 1.34 [1.03 to 1.25], 0.95 [0.9 to 0.99], and 1.15 [1.03 to 1.29], respectively). And participants who ate snacks showed a shorter period of hyperglycemia and less GV compared to those without. CONCLUSION: We confirmed that residual insulin secretion, daytime step count, HbA1c, and women were the most relevant determinants of adequate glycemic control in insulin-treated patients with T2DM. In addition, individuals with snack consumption were exposed to lower times of hyperglycemia and GV.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Hiperglucemia , Femenino , Humanos , Glucemia/metabolismo , Automonitorización de la Glucosa Sanguínea , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/inducido químicamente , Hemoglobina Glucada , Hiperglucemia/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Insulina/uso terapéutico , Estilo de Vida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA