RESUMEN
The selected strain, TAP041, showing an excellent ability to reduce the glyoxal and methylglyoxal levels, was identified by 16S rRNA gene-based phylogenetic analysis as Pediococcus pentosaceus. It demonstrated probiotic properties, including acid, bile salt, pancreatin, lysozyme tolerance, gut adhesion, and auto/coaggregation. In RAW264.7 macrophages, both live and heat-killed strains induced nitric oxide production and activated inducible nitric oxide synthase. RAW264.7 treated with P. pentosaceus TAP041 increased the expression level of tumor necrosis factor-α, interleukin (IL)-1ß, IL-6, and cyclooxygenase-2, and regulated the expression of c-Jun amino-terminal kinase, p38, and extracellular signal-regulated kinase. These findings suggest that both live and heat-killed P. pentosaceus TAP041 can be used as potential immunostimulatory agents in functional food additives. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-024-01530-2.
RESUMEN
This study investigated the acid tolerance responses of Lactiplantibacillus plantarum LM1001 at physiological and molecular levels. Upon exposure to low pH, L. plantarum LM1001 demonstrated increased ATPase activity and ammonia consumption, which contributed to a higher intracellular pH. Comparative analysis of cell membrane fatty acids revealed that acid-stressed cells had a significantly higher proportion of unsaturated fatty acids than those of unstressed cells. There was differential upregulation of several genes, notably those involved in alkali production (arcB, argG, and argH) and in class I and class III stress responses (clpE, clpP, hrcA, dnaK, grpE, groEL, and groES). Following 2-h exposure to pH 2.5, L. plantarum LM1001 not only exhibited enhanced survival but also showed increased auto-aggregation and improved mucin adhesion capability, albeit with a reduction in hydrophobicity. These findings indicate that acid stress induces adaptive physiological and metabolic changes in L. plantarum LM1001, enhancing its acid resistance and adherence properties. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-024-01582-4.
RESUMEN
Synbiotics are complex preparations of prebiotics that can be selectively utilized by live microorganisms to improve host health. Synbiotics are divided into complementary synbiotics, which consist of probiotics and prebiotics with independent functions, and synergistic synbiotics, which consist of prebiotics that are selectively used by gut microorganisms. Complementary synbiotics used in human clinical trials include Lactobacillus spp. and Bifidobacterium spp. as probiotics, and fructooligosaccharides, galactooligosaccharides, and inulin as prebiotics. Over the past five years, synbiotics have been most commonly used in patients with metabolic disorders, including obesity, and immune and gastrointestinal disorders. Several studies have observed alterations in the microbial community; however, these changes did not lead to significant improvements in disease outcomes or biochemical and hematological markers. The same synbiotics have been applied to individuals with different gut environments. As a result, even with the same synbiotics, there are non-responders who do not respond to the applied synbiotics due to the different intestinal environment for each individual. Therefore, to obtain meaningful results, applying different synbiotics depending on the individual is necessary. Synergistic synbiotics are one solution to circumvent this problem, as they combine elements that can effectively improve health, even in non-responders. This review aims to explain the concept of synbiotics, highlight recent human clinical trials, and explore the current state of research on synergistic synbiotics.
Asunto(s)
Microbioma Gastrointestinal , Promoción de la Salud , Prebióticos , Probióticos , Simbióticos , Humanos , Promoción de la Salud/métodos , Manejo de la Enfermedad , Oligosacáridos/metabolismo , Bifidobacterium/metabolismo , Lactobacillus/metabolismo , Obesidad/terapia , Enfermedades Gastrointestinales/microbiología , Enfermedades Gastrointestinales/terapiaRESUMEN
Plants, known for their immobility, employ various mechanisms against stress and damage. A prominent feature is the formation of callus tissue-a cellular growth phenomenon that remains insufficiently explored, despite its distinctive cellular plasticity compared to vertebrates. Callus formation involves dedifferentiated cells, with a subset attaining pluripotency. Calluses exhibit an extraordinary capacity to reinitiate cellular division and undergo structural transformations, generating de novo shoots and roots, thereby developing into regenerated plants-a testament to the heightened developmental plasticity inherent in plants. In this way, plant regeneration through clonal propagation is a widely employed technique for vegetative reproduction. Thus, exploration of the biological components involved in regaining pluripotency contributes to the foundation upon which methods of somatic plant propagation can be advanced. This review provides an overview of the cellular pathway involved in callus and subsequent de novo shoot formation from already differentiated plant tissue, highlighting key genes critical to this process. In addition, it explores the intricate realm of epigenetic regulatory processes, emphasizing the nuanced dynamics of DNA methylation that contribute to plant regeneration. Finally, we briefly discuss somaclonal variation, examining its relation to DNA methylation, and investigating the heritability of epigenomic changes in crops.
Asunto(s)
Productos Agrícolas , Metilación de ADN , Animales , División Celular , Proliferación Celular , Diferenciación CelularRESUMEN
The anticancer potential of Levilactobacillus brevis KU15176 against the stomach cancer cell line AGS has been reported previously. In this study, we aimed to analyze the genome of L. brevis KU15176 and identify key genes that may have potential anticancer properties. Among potential anticancer molecules, the role of arginine deiminase (ADI) in conferring an antiproliferative functionality was confirmed. In vitro assay against AGS cell line confirmed that recombinant ADI from L. brevis KU15176 (ADI_br, 5 µg/mL), overexpressed in E. coli BL21 (DE3), exerted an inhibitory effect on AGS cell growth, resulting in a 65.32% reduction in cell viability. Moreover, the expression of apoptosis-related genes, such as bax, bad, caspase-7, and caspase-3, as well as the activity of caspase-9 in ADI_br-treated AGS cells, was higher than those in untreated (culture medium-only) cells. The cell-scattering behavior of ADI_br-treated cells showed characteristics of apoptosis. Flow cytometry analyses of AGS cells treated with ADI_br for 24 and 28 h revealed apoptotic rates of 11.87 and 24.09, respectively, indicating the progression of apoptosis in AGS cells after ADI_br treatment. This study highlights the potential of ADI_br as an effective enzyme for anticancer applications.
Asunto(s)
Apoptosis , Proliferación Celular , Hidrolasas , Levilactobacillus brevis , Neoplasias Gástricas , Humanos , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Hidrolasas/metabolismo , Hidrolasas/genética , Hidrolasas/farmacología , Levilactobacillus brevis/genética , Levilactobacillus brevis/enzimología , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genéticaRESUMEN
Levilactobacillus brevis KU15006, isolated from kimchi, exhibits pathogen-antagonistic and anti-diabetic activities; however, the safety of this strain has not been assessed. In the present study, L. brevis KU15006 was evaluated to elucidate its safety as a probiotic strain using phenotypic and genotypic analyses. Its safety was assessed using a minimum inhibitory concentration test comprising nine antibiotics, 26 antibiotic resistance genes, a single conjugative element, virulence gene analysis, hemolysis, cell cytotoxicity, mucin degradation, and toxic metabolite production. L. brevis KU15006 exhibited equal or lower minimum inhibitory concentration for the nine antibiotics than the cut-off value established by the European Food Safety Authority. It did not harbor antibiotic resistance and virulence genes. L. brevis KU15006 lacked ß-hemolysis, mucin degradation, cytotoxicity against Caco-2 cells, gelatin liquefaction, bile salt deconjugation, and toxic metabolite production abilities. Based on the results, L. brevis KU15006, which has antagonistic and anti-diabetic effects, could be marketed as a probiotic in the future.
RESUMEN
Milk is a widely consumed nutrient-rich food containing protein variants such as casein A2 and A1. A1 differs from A2 in an amino acid at position 67 (Pro67 to His67). The breakdown of ß-casein yields ß-casomorphins (BCM), among which BCM-7 is extensively studied for its effects on the human body. Animal studies have shown that A1 ß-casein milk increases digestive transit time and enhances myeloperoxidase activity. Individuals with lactose intolerance prefer A2 milk to conventional A1 milk, as BCM-7 in A1 milk can lead to inflammation and discomfort in sensitive individuals. A2 milk, which contains A2 ß-casein, is believed to be more easily digestible than A1 ß-casein. Its popularity has grown owing to reports linking A1 casein to diseases such as type 1 diabetes, heart disease, and autism. A2 milk has gained popularity as an alternative to A1 milk, primarily because of its potential benefits for individuals with certain diseases. This review aims to provide an updated understanding of A2 milk consumption and its health benefits. This review aims to provide an updated understanding of A2 milk consumption and its health benefits.
RESUMEN
The lactic acid bacteria, including Latilactobacillus sakei and Latilactobacillus curvatus, have been widely studied for their preventive and therapeutic effects. In this study, the underlying mechanism of action for the antioxidant and immunostimulatory effects of two strains of heat-treated paraprobiotics was examined. Heat-treated L. sakei KU15041 and L. curvatus KU15003 showed higher radical scavenging activity in both the 2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 2,2-diphenyl-1-picryl-hydrazyl (DPPH) assays than the commercial probiotic strain LGG. In addition, treatment with these two strains exhibited immunostimulatory effects in RAW 264.7 macrophages, with L. curvatus KU15003 showing a slightly higher effect. Additionally, they promoted phagocytosis and NO production in RAW 264.7 cells without any cytotoxicity. Moreover, the expression of tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6 was upregulated. These strains resulted in an increased expression of inducible nitric oxide synthase and cyclooxygenase-2. Moreover, the nuclear factor-κB and mitogen-activated protein kinase signaling pathways were stimulated by these strains. These findings suggest the potential of using L. sakei KU15041 and L. curvatus KU15003 in food or by themselves as probiotics with antioxidant and immune-enhancing properties.
Asunto(s)
Latilactobacillus sakei , Antioxidantes/farmacología , Antioxidantes/metabolismo , Calor , Lactobacillus/metabolismoRESUMEN
In this study, the potential anti-obesity effects of Lactococcus lactis subsp. lactis CAB701, a probiotic strain isolated from cabbage, were investigated using in vitro and in vivo assays. L. lactis subsp. lactis CAB701 inhibited adipocyte differentiation of 3T3-L1 cells by 67%. In an in vivo model of high-fat diet-induced obese mice, treatment with L. lactis subsp. lactis CAB701 markedly reduced body weight and peri-epididymal fat mass, and significantly reduced serum total cholesterol, triglycerides, and low-density lipoprotein cholesterol levels. Molecular analysis revealed a significant modulation of key genes and proteins involved in lipid metabolism and adipogenesis. Specifically, fatty acid synthase and peroxisome proliferator-activated receptor gamma were significantly downregulated in peri-epididymal adipose tissue, alluding to the molecular mechanism underlying the anti-obesity effects exerted by L. lactis subsp. lactis CAB701. Furthermore, histological examination revealed a significant reduction in adipocyte size in the treated group, indicating effective adipose tissue remodeling. Our findings suggest that L. lactis subsp. lactis CAB701 mediates anti-obesity effects through the modulation of critical molecular markers and lipid profiles. L. lactis subsp. lactis CAB701 thus represents a promising candidate for combating obesity and related metabolic disorders.
RESUMEN
Background: This study investigated the clinical characteristics and kidney outcomes of childhood-onset lupus nephritis (LN), and risk factors associated with prognosis. Methods: We enrolled 216 patients with histologically diagnosed LN during childhood. The Korean Society of Pediatric Nephrology organized a retrospective cohort study of childhood-onset LN in 13 major pediatric nephrology centers in South Korea. Results: The mean age at kidney biopsy was 13.2 ± 3.22 years. The main forms of presentation were nephrotic syndrome and/or hematuria in 152 patients (70.4%), and the most common histological finding was World Health Organization (WHO) class IV in 138 patients (63.9%), followed by WHO class III in 34 patients (15.7%). In the outcome analysis, the mean follow-up period of the patients was 7.8 ± 5.11 years. At last follow-up, 32 patients (14.8%) developed advanced chronic kidney disease (CKD). Male sex and failure to achieve remission at 12 months of treatment were significant risk factors for developing advanced CKD (hazard ratio of 2.57 and 2.29, respectively). Conclusion: Our study demonstrated the clinical characteristics and long-term outcomes of patients with childhood-onset LN. Male sex and failure to achieve remission in the first year of treatment were predictive of advanced CKD. Therefore, prompt awareness and close monitoring of these high-risk patients are needed, which may further improve the prognosis of children with LN.
RESUMEN
Probiotics are living microorganisms that are beneficial to the host, enhancing the immune response by promoting antibody production, regulating cytokine secretion, and stimulating T cells. However, probiotics have limitations in that they require viability control and have a short shelf life. Recently, the use of paraprobiotics has gained attention. These include dead bacterial cells, bacterial fractions, and cell lysate that have health benefits and are stable and safe for use. Paraprobiotics comprise molecules of bacterial cell wall compounds, such as peptidoglycans, teichoic acids, polysaccharides, and cell surface proteins. Paraprobiotics are manufactured by a diverse range of techniques, including thermal treatments, high pressure, ultraviolet rays, sonication, ionizing radiation, and pH modification. Their beneficial health effects include immunomodulatory, intestinal balancing, anticancer, and antimicrobial activities. Therefore, this review summarizes and discusses the manufacturing methods and bioavailability of paraprobiotics and suggests their potential health advantages.
RESUMEN
This study explored the potential of Lactococcus lactis subsp. lactis CAB701 as a probiotic strain, focusing on its immunostimulatory properties. Despite adverse conditions in the gastrointestinal environment, this strain exhibited remarkable survivability, as evidenced by its tolerance to acid, bile, and pancreatin, coupled with its impressive ability to adhere to Caco-2 cells. It also exhibited significant antioxidant activity, similar to the established probiotic Lacticaseibacillus rhamnosus GG (LGG). Our research elucidates the potent immunostimulatory effects of L. lactis subsp. lactis CAB701. This strain significantly enhanced nitric oxide production in RAW 264.7, far exceeding that obtained with LGG. An in-depth examination revealed elevated expression of key inflammatory mediators, including inducible nitric oxide synthase, tumor necrosis factor-alpha, cyclooxygenase-2, interleukin (IL)-1 beta, and IL-6. L. lactis subsp. lactis CAB701 increases the expression of critical signaling proteins in the mitogen-activated protein kinase pathway. This prompted a substantial increase in the expression of phosphorylated c-Jun N-terminal kinases and extracellular signal-regulated kinases, suggesting their role in modulating these immune-related pathways. Overall, these findings demonstrate the significant immunostimulatory capacity of L. lactis subsp. lactis CAB701, positioning it as a potential candidate for probiotic use, especially in applications that enhance immune responses.
RESUMEN
Soybean-derived peptides exert several beneficial effects in various experimental models. However, only a few studies have focused on the radical scavenging and anti-wrinkle effects of soymilk-derived peptides produced via different processes, such as fermentation, enzymatic treatment, and ultrafiltration. Therefore, in this study, we investigated the radical scavenging and antiwrinkle effects of soymilk fractions produced using these processes. We found that 50SFMKUF5, a 5 kDa ultrafiltration fraction fermented with Lacticaseibacillus paracasei MK1 after flavourzyme treatment, exhibited the highest radical scavenging activity using the 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay as well as potent anti-wrinkle effects assessed by type 1 procollagen production and tumor necrosis factor-α production in ultraviolet B (UVB)-treated human dermal fibroblasts and HaCaT keratinocytes. To identify potential bioactive peptides, candidate peptides were synthesized, and their anti-wrinkle effects were assessed. APEFLKEAFGVN (APE), palmitoyl-APE, and QIVTVEGGLSVISPK peptides were synthesized and used to treat UVB-irradiated fibroblasts, HaCaT keratinocytes, and α-melanocyte-stimulating hormone-induced B16F1 melanoma cells. Among these peptides, Pal-APE exerted the strongest effect. Our results highlight the potential of soymilk peptides as anti-aging substances.
RESUMEN
[This corrects the article DOI: 10.3389/fped.2023.994979.].
RESUMEN
BACKGROUND: Dyslipidemia can cause cardiovascular disease and increase the fatality rate among children with chronic kidney disease (CKD); this makes early screening and treatment of dyslipidemia crucial. This study aimed to assess the association between the changes in serum total cholesterol levels over time and the degree of CKD progression in children. METHODS: From April 2011 to August 2021, 379 of the 432 participants enrolled in the KoreaN cohort study for Outcomes in patients With Pediatric CKD (KNOW-PedCKD) were included and divided into 4 categories based on total cholesterol levels (< 170 mg/dL, acceptable; 170-199, borderline; 200-239, high; and ≥ 240, very high). Survival analysis using conventional and time-dependent Cox proportional hazards model were performed for a composite event of CKD progression (≥ 50% decrease in estimated glomerular filtration rate from baseline, a twofold increase in creatinine, or the occurrence of dialysis or kidney transplantation). RESULT: The incidence of composite event of CKD progression was 96.3, 90.4, 87.3, and 270.6 cases per 1000 person-years in the acceptable, borderline, high, and very high categories, respectively. On using the time-dependent Cox proportional hazards model, the hazard ratio of the very high category was significantly higher than that of the acceptable category by 3.13 times as per univariate analysis and 2.37 times as per multivariate analysis. CONCLUSIONS: Very high serum total cholesterol is a significant risk factor for CKD progression in children. Lowering total cholesterol levels below the very high category in children with CKD may delay the progression of CKD. A higher resolution version of the Graphical abstract is available as Supplementary information.
Asunto(s)
Dislipidemias , Insuficiencia Renal Crónica , Humanos , Niño , Estudios de Cohortes , Diálisis Renal , Progresión de la Enfermedad , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/etiología , Factores de Riesgo , Dislipidemias/epidemiología , Colesterol , Tasa de Filtración GlomerularRESUMEN
Synbiotics contain health-beneficial bacteria, i.e., probiotics and prebiotics selectively utilized by the probiotics. Herein, three probiotic strains, Leuconostoc lactis CCK940, L. lactis SBC001, and Weissella cibaria YRK005, and the oligosaccharides produced by these strains (CCK, SBC, and YRK, respectively) were used to prepare nine synbiotic combinations. Macrophages (RAW 264.7) were treated with these synbiotic combinations and the corresponding lactic acid bacteria and oligosaccharides alone to evaluate the treatments' immunostimulatory activities. The level of nitric oxide (NO) production was significantly higher in the macrophages treated with the synbiotics than in those treated with the corresponding probiotic strains and the oligosaccharide alone. The immunostimulatory activities of the synbiotics increased regardless of the probiotic strain and the type of oligosaccharide used. The expressions of tissue necrosis factor-α, interleukin-1ß, cyclooxygenase-2, inducible NO synthase genes, and extracellular-signal-regulated and c-Jun N-terminal kinases were significantly higher in the macrophages treated with the three synbiotics than in those treated with the corresponding strains or with the oligosaccharides alone. These results indicate that the synergistic immunostimulatory activities of probiotics and the prebiotics they produced in the studied synbiotic preparations resulted from the activation of the mitogen-activated protein-kinase-signaling pathway. This study suggests the combined use of these probiotics and prebiotics in the development of synbiotic preparations as health supplements.
RESUMEN
Weissella bacteria are gram-positive, anaerobic, fermentative, and have probiotic potential. This study aimed to compare the genomes of W. cibaria YRK005 and W. confusa CCK931 isolated from young radish and kimchi, respectively. The genomic size of W. cibaria YRK005 and W. confusa CCK931 with GC content is 2.36 Mb (45%) and 2.28 Mb (44.67%), respectively. The genome study identified 92 and 83 CAZymes genes, respectively, for W. cibaria YRK005 and W. confusa CCK931, that are responsible for 26 and 27 glycoside hydrolases (GH) and 21 and 27 glycosyl transferases. Both species have one gene for carbohydrate esterases and three genes for carbohydrate-binding modules. The primary CAZymes found in both species that are involved in oligosaccharide utilization are GH1, GH2, GH30, GH13_30, GH13_31, GH42, GH43, and GH65. The study also details the production pathways for glycogen and folate. Both strains include a unique repertoire of genes, including hypothetical proteins, showing adaptability to diverse ecological niches and evolution over time. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-022-01232-7.
RESUMEN
Whether knowingly or unknowingly, humans have been consuming probiotic microorganisms through traditionally fermented foods for generations. Bacteria, like lactic acid bacteria, are generally thought to be harmless and produce many metabolites that are beneficial for human health. Probiotics offer a wide range of health benefits; however, their therapeutic usage is limited because they are living organisms. As a result, the focus on the health advantages of microbes has recently shifted from viable live probiotics to non-viable microbes made from probiotics. These newly emerging non-viable microbes include paraprobiotics, postbiotics, psychobiotics, nutribiotics, and gerobiotics. Their metabolites can boost physiological health and reveal the therapeutic effects of probiotics. This new terminology in microbes, their traits, and their applications are summarized in the present review.
RESUMEN
The lactic acid bacteria, Lactococcus lactis subsp. lactis LM1185 was isolated from Hydrangea macrophylla. Strain LM1185 showed 50.5% of acid tolerance at pH 2.5 for 2 h and 30.4% of 0.3% (w/v) bile salt tolerance for 24 h. The antioxidant activity of this strain was measured at 99.4% of 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activity. When RAW 264.7 macrophage cells were treated with strain LM1185, there was no observed cytotoxicity. This strain showed high nitric oxide production and mRNA expression levels of cytokines such as tumor necrosis factor-α and inducible nitric oxide synthase (iNOS). The nuclear factor-kB signaling pathway was activated by this strain resulting in the production of iNOS and cyclooxygenase-2 determined by western blotting. The present results indicated that L. lactis subsp. lactis LM1185 could be used as potential probiotics and may play a crucial role in the immunostimulatory effect on macrophages. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-022-01199-5.
RESUMEN
Due to their numerous well-established applications in the food industry, there have been many studies regarding the adaptation and evolution of lactic acid bacteria (LAB) in a wide variety of hosts and environments. Progress in sequencing technology and continual decreases in its costs have led to the availability of LAB genome sequence data. Bioinformatics has been central to the extraction of valuable information from these raw genome sequence data. This paper presents the roles of bioinformatics tools and databases in understanding the adaptation and evolution of LAB, as well as the bioinformatics methods used in the initial screening of LAB for probiotic potential. Moreover, the advantages, challenges, and limitations of employing bioinformatics for these purposes are discussed.