Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
J Thorac Dis ; 16(6): 3794-3804, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38983167

RESUMEN

Background: Brain metastasis is common with non-small cell lung cancer (NSCLC). Patients with some early-stage cancers don't benefit from routine brain imaging. Currently clinical stage alone is used to justify additional brain imaging. Other clinical and demographic characteristics may be associated with isolated brain metastasis (IBM). We aimed to define the most salient clinical features associated with synchronous IBM, hypothesizing that clinical and demographic factors could be used to determine the risk of brain metastasis. Methods: The National Cancer Database was used to identify patients with NSCLC from 2016-2020. Primary outcome was the presence of IBM relative to patients without evidence of any metastasis. Cohorts were divided into test and validation. The test cohort was used to identify risk factors for IBM using multivariable logistic regression. Using the regression, a scoring system was created to estimate the rate of synchronous IBM. The accuracy of the scoring system was evaluated with receiver operating characteristic (ROC) analysis using the validation cohort. Results: Study population consisted of 396,113 patients: 25,907 IBM and 370,206 without metastatic disease. IBM was associated with age, clinical T stage, clinical N stage, Charlson/Deyo comorbidity score, histology, and grade. A scoring system using these factors showed excellent accuracy in the test and validation cohort in ROC analysis (0.806 and 0.805, respectively). Conclusions: Clinical and demographic characteristics can be used to stratify the risk of IBM among patients with NSCLC and provide an evidence-based method to identify patients who require dedicated brain imaging in the absence of other metastatic disease.

2.
bioRxiv ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38853981

RESUMEN

Short linear motifs are sequences of amino acids present in unstructured polypeptide regions that function as ligands for specific sites on folded protein domains. These interactions, which often occur with low to modest affinity, modulate dynamic biological processes such as signal transduction and membrane trafficking. We recently described Ligand Footprinting-Mass Spectrometry (LiF-MS), a technique that rapidly and precisely maps sites at which short peptide ligands bind their biologically relevant recognition sites on folded protein domains. This approach marks the binding location of a peptide ligand on a structured protein using a cleavable crosslinker appended to the ligand that leaves behind a stable chemical modification following cleavage. This modification serves as a mass tag detectable by mass spectrometry, pinpointing sites of peptide ligand binding. Here we present LiF-MS+, an improved version of the footprinting technique that replaces the butanol mass tag with 1-butylpyrrolidine, which is positively charged at neutral pH and thus aids in ionization of the crosslinked peptide for analysis by mass spectrometry. We show ligand-mediated butylpyrrolidine footprinting effectively maps the well characterized binding interaction of the p38α mitogen-activated protein kinase (MAPK) with a MKK6 D-motif short linear motif peptide ligand, uncovering additional binding site information not observed in our original experiment. LiF-MS+ is thus a straightforward improvement of our previously published methodology for mapping the binding of short linear motifs to folded protein domains.

3.
Commun Med (Lond) ; 4(1): 117, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38872007

RESUMEN

BACKGROUND: Mobile upright PET devices have the potential to enable previously impossible neuroimaging studies. Currently available options are imagers with deep brain coverage that severely limit head/body movements or imagers with upright/motion enabling properties that are limited to only covering the brain surface. METHODS: In this study, we test the feasibility of an upright, motion-compatible brain imager, our Ambulatory Motion-enabling Positron Emission Tomography (AMPET) helmet prototype, for use as a neuroscience tool by replicating a variant of a published PET/fMRI study of the neurocorrelates of human walking. We validate our AMPET prototype by conducting a walking movement paradigm to determine motion tolerance and assess for appropriate task related activity in motor-related brain regions. Human participants (n = 11 patients) performed a walking-in-place task with simultaneous AMPET imaging, receiving a bolus delivery of F18-Fluorodeoxyglucose. RESULTS: Here we validate three pre-determined measure criteria, including brain alignment motion artifact of less than <2 mm and functional neuroimaging outcomes consistent with existing walking movement literature. CONCLUSIONS: The study extends the potential and utility for use of mobile, upright, and motion-tolerant neuroimaging devices in real-world, ecologically-valid paradigms. Our approach accounts for the real-world logistics of an actual human participant study and can be used to inform experimental physicists, engineers and imaging instrumentation developers undertaking similar future studies. The technical advances described herein help set new priorities for facilitating future neuroimaging devices and research of the human brain in health and disease.


Brain imaging plays an important role in understanding how the human brain functions in both health and disease. However, traditional brain scanners often require people to remain still, limiting the study of the brain in motion, and excluding people who cannot remain still. To overcome this, our team developed an imager that moves with a person's head, which uses a suspended ring of lightweight detectors that fit to the head. Using our imager, we were able to obtain clear brain images of people walking in place that showed the expected brain activity patterns during walking. Further development of our imager could enable it to be used to better understand real-world brain function and behavior, enabling enhanced knowledge and treatment of neurological conditions.

4.
Appl Environ Microbiol ; 90(6): e0229323, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38786361

RESUMEN

Bacteria shape interactions between hosts and fungal pathogens. In some cases, bacteria associated with fungi are essential for pathogen virulence. In other systems, host-associated microbiomes confer resistance against fungal pathogens. We studied an aphid-specific entomopathogenic fungus called Pandora neoaphidis in the context of both host and pathogen microbiomes. Aphids host several species of heritable bacteria, some of which confer resistance against Pandora. We first found that spores that emerged from aphids that harbored protective bacteria were less virulent against subsequent hosts and did not grow on plate media. We then used 16S amplicon sequencing to study the bacterial microbiome of fungal mycelia and spores during plate culturing and host infection. We found that the bacterial community is remarkably stable in culture despite dramatic changes in pathogen virulence. Last, we used an experimentally transformed symbiont of aphids to show that Pandora can acquire host-associated bacteria during infection. Our results uncover new roles for bacteria in the dynamics of aphid-pathogen interactions and illustrate the importance of the broader microbiological context in studies of fungal pathogenesis. IMPORTANCE: Entomopathogenic fungi play important roles in the population dynamics of many insect species. Understanding the factors shaping entomopathogen virulence is critical for agricultural management and for the use of fungi in pest biocontrol. We show that heritable bacteria in aphids, which confer protection to their hosts against fungal entomopathogens, influence virulence against subsequent hosts. Aphids reproduce asexually and are typically surrounded by genetically identical offspring, and thus these effects likely shape the dynamics of fungal disease in aphid populations. Furthermore, fungal entomopathogens are known to rapidly lose virulence in lab culture, complicating their laboratory use. We show that this phenomenon is not driven by changes in the associated bacterial microbiome. These results contribute to our broader understanding of the aphid model system and shed light on the biology of the Entomophthorales-an important but understudied group of fungi.


Asunto(s)
Áfidos , Microbiota , Animales , Áfidos/microbiología , Virulencia , Interacciones Huésped-Patógeno , Entomophthorales/patogenicidad , Entomophthorales/fisiología , Entomophthorales/genética , Bacterias/genética , Bacterias/clasificación , Bacterias/patogenicidad , Bacterias/aislamiento & purificación , Simbiosis , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/patogenicidad
5.
FASEB J ; 38(10): e23647, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38787599

RESUMEN

Arginine methylation is a protein posttranslational modification important for the development of skeletal muscle mass and function. Despite this, our understanding of the regulation of arginine methylation under settings of health and disease remains largely undefined. Here, we investigated the regulation of arginine methylation in skeletal muscles in response to exercise and hypertrophic growth, and in diseases involving metabolic dysfunction and atrophy. We report a limited regulation of arginine methylation under physiological settings that promote muscle health, such as during growth and acute exercise, nor in disease models of insulin resistance. In contrast, we saw a significant remodeling of asymmetric dimethylation in models of atrophy characterized by the loss of innervation, including in muscle biopsies from patients with myotrophic lateral sclerosis (ALS). Mass spectrometry-based quantification of the proteome and asymmetric arginine dimethylome of skeletal muscle from individuals with ALS revealed the largest compendium of protein changes with the identification of 793 regulated proteins, and novel site-specific changes in asymmetric dimethyl arginine (aDMA) of key sarcomeric and cytoskeletal proteins. Finally, we show that in vivo overexpression of PRMT1 and aDMA resulted in increased fatigue resistance and functional recovery in mice. Our study provides evidence for asymmetric dimethylation as a regulator of muscle pathophysiology and presents a valuable proteomics resource and rationale for numerous methylated and nonmethylated proteins, including PRMT1, to be pursued for therapeutic development in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Arginina , Músculo Esquelético , Proteína-Arginina N-Metiltransferasas , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Arginina/metabolismo , Arginina/análogos & derivados , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Ratones , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Masculino , Metilación , Femenino , Procesamiento Proteico-Postraduccional , Ratones Endogámicos C57BL , Proteoma/metabolismo
6.
EMBO Rep ; 25(4): 1835-1858, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38429578

RESUMEN

Cancer cachexia is a tumour-induced wasting syndrome, characterised by extreme loss of skeletal muscle. Defective mitochondria can contribute to muscle wasting; however, the underlying mechanisms remain unclear. Using a Drosophila larval model of cancer cachexia, we observed enlarged and dysfunctional muscle mitochondria. Morphological changes were accompanied by upregulation of beta-oxidation proteins and depletion of muscle glycogen and lipid stores. Muscle lipid stores were also decreased in Colon-26 adenocarcinoma mouse muscle samples, and expression of the beta-oxidation gene CPT1A was negatively associated with muscle quality in cachectic patients. Mechanistically, mitochondrial defects result from reduced muscle insulin signalling, downstream of tumour-secreted insulin growth factor binding protein (IGFBP) homologue ImpL2. Strikingly, muscle-specific inhibition of Forkhead box O (FOXO), mitochondrial fusion, or beta-oxidation in tumour-bearing animals preserved muscle integrity. Finally, dietary supplementation with nicotinamide or lipids, improved muscle health in tumour-bearing animals. Overall, our work demonstrates that muscle FOXO, mitochondria dynamics/beta-oxidation and lipid utilisation are key regulators of muscle wasting in cancer cachexia.


Asunto(s)
Neoplasias del Colon , Proteínas de Drosophila , Insulinas , Ratones , Animales , Humanos , Caquexia/etiología , Caquexia/metabolismo , Drosophila/metabolismo , Dinámicas Mitocondriales , Atrofia Muscular/patología , Músculo Esquelético/metabolismo , Neoplasias del Colon/metabolismo , Insulinas/metabolismo , Lípidos , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
7.
J Proteome Res ; 23(4): 1285-1297, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38480473

RESUMEN

C18ORF25 was recently shown to be phosphorylated at S67 by AMP-activated protein kinase (AMPK) in the skeletal muscle, following acute exercise in humans. Phosphorylation was shown to improve the ex vivo skeletal muscle contractile function in mice, but our understanding of the molecular mechanisms is incomplete. Here, we profiled the interactome of C18ORF25 in mouse myotubes using affinity purification coupled to mass spectrometry. This analysis included an investigation of AMPK-dependent and S67-dependent protein/protein interactions. Several nucleocytoplasmic and contractile-associated proteins were identified, which revealed a subset of GTPases that associate with C18ORF25 in an AMPK- and S67 phosphorylation-dependent manner. We confirmed that C18ORF25 is localized to the nucleus and the contractile apparatus in the skeletal muscle. Mice lacking C18Orf25 display defects in calcium handling specifically in fast-twitch muscle fibers. To investigate these mechanisms, we developed an integrated single fiber physiology and single fiber proteomic platform. The approach enabled a detailed assessment of various steps in the excitation-contraction pathway including SR calcium handling and force generation, followed by paired single fiber proteomic analysis. This enabled us to identify >700 protein/phenotype associations and 36 fiber-type specific differences, following loss of C18Orf25. Taken together, our data provide unique insights into the function of C18ORF25 and its role in skeletal muscle physiology.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Fibras Musculares de Contracción Lenta , Ratones , Humanos , Animales , Fibras Musculares de Contracción Lenta/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Proteómica/métodos , Calcio/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares de Contracción Rápida/metabolismo , Músculo Esquelético/metabolismo , Contracción Muscular , Espectrometría de Masas
8.
Neuropsychologia ; 195: 108786, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38181845

RESUMEN

Two parallel research tracks link the morphology of small and shallow indentations, or sulci, of the cerebral cortex with functional features of the cortex and human cognition, respectively. The first track identified a relationship between the mid-fusiform sulcus (MFS) in ventral temporal cortex (VTC) and cognition in individuals with Autism Spectrum Disorder (ASD). The second track identified a new sulcus, the inframarginal sulcus (IFRMS), that serves as a tripartite landmark within the posteromedial cortex (PMC). As VTC and PMC are structurally and functionally different in ASD, here, we integrated these two tracks and tested if there are morphological differences in VTC and PMC sulci in a sample of young (5-17 years old) male participants (50 participants with ASD and 50 neurotypical controls). Our approach replicates and extends recent findings in four ways. First, regarding replication, the standard deviation (STD) of MFS cortical thickness (CT) was increased in ASD. Second, MFS length was shorter in ASD. Third, the CT STD effect extended to other VTC and to PMC sulci. Fourth, additional morphological features of VTC sulci (depth, surface area, gray matter volume) and PMC sulci (mean CT) were decreased in ASD, including putative tertiary sulci, which emerge last in gestation and continue to develop after birth. To our knowledge, this study is the most extensive comparison of the sulcal landscape (including putative tertiary sulci) in multiple cortical expanses between individuals with ASD and NTs based on manually defined sulci at the level of individual hemispheres, providing novel targets for future studies of neurodevelopmental disorders more broadly.


Asunto(s)
Trastorno del Espectro Autista , Humanos , Masculino , Preescolar , Niño , Adolescente , Trastorno del Espectro Autista/diagnóstico por imagen , Imagen por Resonancia Magnética , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/anatomía & histología , Lóbulo Temporal/diagnóstico por imagen , Cognición
9.
Nat Metab ; 6(2): 254-272, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38263317

RESUMEN

Small extracellular vesicles (EVs) are signalling messengers that regulate inter-tissue communication through delivery of their molecular cargo. Here, we show that liver-derived EVs are acute regulators of whole-body glycaemic control in mice. Liver EV secretion into the circulation is increased in response to hyperglycaemia, resulting in increased glucose effectiveness and insulin secretion through direct inter-organ EV signalling to skeletal muscle and the pancreas, respectively. This acute blood glucose lowering effect occurs in healthy and obese mice with non-alcoholic fatty liver disease, despite marked remodelling of the liver-derived EV proteome in obese mice. The EV-mediated blood glucose lowering effects were recapitulated by administration of liver EVs derived from humans with or without progressive non-alcoholic fatty liver disease, suggesting broad functional conservation of liver EV signalling and potential therapeutic utility. Taken together, this work reveals a mechanism whereby liver EVs act on peripheral tissues via endocrine signalling to restore euglycaemia in the postprandial state.


Asunto(s)
Vesículas Extracelulares , Enfermedad del Hígado Graso no Alcohólico , Humanos , Animales , Ratones , Control Glucémico , Glucemia , Ratones Obesos
10.
Elife ; 122024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38224289

RESUMEN

Inter-organ communication is a vital process to maintain physiologic homeostasis, and its dysregulation contributes to many human diseases. Given that circulating bioactive factors are stable in serum, occur naturally, and are easily assayed from blood, they present obvious focal molecules for therapeutic intervention and biomarker development. Recently, studies have shown that secreted proteins mediating inter-tissue signaling could be identified by 'brute force' surveys of all genes within RNA-sequencing measures across tissues within a population. Expanding on this intuition, we reasoned that parallel strategies could be used to understand how individual genes mediate signaling across metabolic tissues through correlative analyses of gene variation between individuals. Thus, comparison of quantitative levels of gene expression relationships between organs in a population could aid in understanding cross-organ signaling. Here, we surveyed gene-gene correlation structure across 18 metabolic tissues in 310 human individuals and 7 tissues in 103 diverse strains of mice fed a normal chow or high-fat/high-sucrose (HFHS) diet. Variation of genes such as FGF21, ADIPOQ, GCG, and IL6 showed enrichments which recapitulate experimental observations. Further, similar analyses were applied to explore both within-tissue signaling mechanisms (liver PCSK9) and genes encoding enzymes producing metabolites (adipose PNPLA2), where inter-individual correlation structure aligned with known roles for these critical metabolic pathways. Examination of sex hormone receptor correlations in mice highlighted the difference of tissue-specific variation in relationships with metabolic traits. We refer to this resource as gene-derived correlations across tissues (GD-CAT) where all tools and data are built into a web portal enabling users to perform these analyses without a single line of code (gdcat.org). This resource enables querying of any gene in any tissue to find correlated patterns of genes, cell types, pathways, and network architectures across metabolic organs.


Asunto(s)
Proproteína Convertasa 9 , Transducción de Señal , Humanos , Animales , Ratones , Homeostasis , Adiposidad
12.
NAR Genom Bioinform ; 5(4): lqad099, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37954574

RESUMEN

A major challenge in mass spectrometry-based phosphoproteomics lies in identifying the substrates of kinases, as currently only a small fraction of substrates identified can be confidently linked with a known kinase. Machine learning techniques are promising approaches for leveraging large-scale phosphoproteomics data to computationally predict substrates of kinases. However, the small number of experimentally validated kinase substrates (true positive) and the high data noise in many phosphoproteomics datasets together limit their applicability and utility. Here, we aim to develop advanced kinase-substrate prediction methods to address these challenges. Using a collection of seven large phosphoproteomics datasets, and both traditional and deep learning models, we first demonstrate that a 'pseudo-positive' learning strategy for alleviating small sample size is effective at improving model predictive performance. We next show that a data resampling-based ensemble learning strategy is useful for improving model stability while further enhancing prediction. Lastly, we introduce an ensemble deep learning model ('SnapKin') by incorporating the above two learning strategies into a 'snapshot' ensemble learning algorithm. We propose SnapKin, an ensemble deep learning method, for predicting substrates of kinases from large-scale phosphoproteomics data. We demonstrate that SnapKin consistently outperforms existing methods in kinase-substrate prediction. SnapKin is freely available at https://github.com/PYangLab/SnapKin.

13.
BMC Genomics ; 24(1): 636, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37875824

RESUMEN

BACKGROUND: Insects are an important reservoir of viral biodiversity, but the vast majority of viruses associated with insects have not been discovered. Recent studies have employed high-throughput RNA sequencing, which has led to rapid advances in our understanding of insect viral diversity. However, insect genomes frequently contain transcribed endogenous viral elements (EVEs) with significant homology to exogenous viruses, complicating the use of RNAseq for viral discovery. METHODS: In this study, we used a multi-pronged sequencing approach to study the virome of an important agricultural pest and prolific vector of plant pathogens, the potato aphid Macrosiphum euphorbiae. We first used rRNA-depleted RNAseq to characterize the microbes found in individual insects. We then used PCR screening to measure the frequency of two heritable viruses in a local aphid population. Lastly, we generated a quality draft genome assembly for M. euphorbiae using Illumina-corrected Nanopore sequencing to identify transcriptionally active EVEs in the host genome. RESULTS: We found reads from two insect-specific viruses (a Flavivirus and an Ambidensovirus) in our RNAseq data, as well as a parasitoid virus (Bracovirus), a plant pathogenic virus (Tombusvirus), and two phages (Acinetobacter and APSE). However, our genome assembly showed that part of the 'virome' of this insect can be attributed to EVEs in the host genome. CONCLUSION: Our work shows that EVEs have led to the misidentification of aphid viruses from RNAseq data, and we argue that this is a widespread challenge for the study of viral diversity in insects.


Asunto(s)
Virus de Plantas , Viroma , Animales , Insectos/genética , Virus de Plantas/genética , Genoma de los Insectos , Secuenciación de Nucleótidos de Alto Rendimiento
14.
Mol Cell Proteomics ; 22(11): 100655, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37793502

RESUMEN

Molecular clocks and daily feeding cycles support metabolism in peripheral tissues. Although the roles of local clocks and feeding are well defined at the transcriptional level, their impact on governing protein abundance in peripheral tissues is unclear. Here, we determine the relative contributions of local molecular clocks and daily feeding cycles on liver and muscle proteomes during the active phase in mice. LC-MS/MS was performed on liver and gastrocnemius muscle harvested 4 h into the dark phase from WT, Bmal1 KO, and dual liver- and muscle-Bmal1-rescued mice under either ad libitum feeding or time-restricted feeding during the dark phase. Feeding-fasting cycles had only minimal effects on levels of liver proteins and few, if any, on the muscle proteome. In contrast, Bmal1 KO altered the abundance of 674 proteins in liver and 80 proteins in muscle. Local rescue of liver and muscle Bmal1 restored ∼50% of proteins in liver and ∼25% in muscle. These included proteins involved in fatty acid oxidation in liver and carbohydrate metabolism in muscle. For liver, proteins involved in de novo lipogenesis were largely dependent on Bmal1 function in other tissues (i.e., the wider clock system). Proteins regulated by BMAL1 in liver and muscle were enriched for secreted proteins. We found that the abundance of fibroblast growth factor 1, a liver secreted protein, requires BMAL1 and that autocrine fibroblast growth factor 1 signaling modulates mitochondrial respiration in hepatocytes. In liver and muscle, BMAL1 is a more potent regulator of dark phase proteomes than daily feeding cycles, highlighting the need to assess protein levels in addition to mRNA when investigating clock mechanisms. The proteome is more extensively regulated by BMAL1 in liver than in muscle, and many metabolic pathways in peripheral tissues are reliant on the function of the clock system as a whole.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Animales , Ratones , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Cromatografía Liquida , Relojes Circadianos/genética , Ritmo Circadiano/genética , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Hígado/metabolismo , Músculos/metabolismo , Proteoma/metabolismo , Espectrometría de Masas en Tándem
15.
Proc Natl Acad Sci U S A ; 120(36): e2303867120, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37639587

RESUMEN

Neutrophils store microbicidal glycoproteins in cytosolic granules to fight intruding pathogens, but their granule distribution and formation mechanism(s) during granulopoiesis remain unmapped. Herein, we comprehensively profile the neutrophil N-glycoproteome with spatiotemporal resolution by analyzing four key types of intracellular organelles isolated from blood-derived neutrophils and during their maturation from bone marrow-derived progenitors using a glycomics-guided glycoproteomics approach. Interestingly, the organelles of resting neutrophils exhibited distinctive glycophenotypes including, most strikingly, highly truncated N-glycans low in α2,6-sialylation and Lewis fucosylation decorating a diverse set of microbicidal proteins (e.g., myeloperoxidase, azurocidin, neutrophil elastase) in the azurophilic granules. Excitingly, proteomics and transcriptomics data from discrete myeloid progenitor stages revealed that profound glycoproteome remodeling underpins the promyelocytic-to-metamyelocyte transition and that the glycophenotypic differences are driven primarily by dynamic changes in protein expression and less by changes within the glycosylation machinery. Notable exceptions were the oligosaccharyltransferase subunits responsible for initiation of N-glycoprotein biosynthesis that were strongly expressed in early myeloid progenitors correlating with relatively high levels of glycosylation of the microbicidal proteins in the azurophilic granules. Our study provides spatiotemporal insights into the complex neutrophil N-glycoproteome featuring intriguing organelle-specific N-glycosylation patterns formed by dynamic glycoproteome remodeling during the early maturation stages of the myeloid progenitors.


Asunto(s)
Neutrófilos , Proteoma , Glicosilación , Cognición , Gránulos Citoplasmáticos
16.
Am J Hum Genet ; 110(9): 1600-1605, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37607539

RESUMEN

Recent studies in non-human model systems have shown therapeutic potential of nucleoside-modified messenger RNA (modRNA) treatments for lysosomal storage diseases. Here, we assessed the efficacy of a modRNA treatment to restore the expression of the galactosidase alpha (GLA), which codes for α-Galactosidase A (α-GAL) enzyme, in a human cardiac model generated from induced pluripotent stem cells (iPSCs) derived from two individuals with Fabry disease. Consistent with the clinical phenotype, cardiomyocytes from iPSCs derived from Fabry-affected individuals showed accumulation of the glycosphingolipid Globotriaosylceramide (GB3), which is an α-galactosidase substrate. Furthermore, the Fabry cardiomyocytes displayed significant upregulation of lysosomal-associated proteins. Upon GLA modRNA treatment, a subset of lysosomal proteins were partially restored to wild-type levels, implying the rescue of the molecular phenotype associated with the Fabry genotype. Importantly, a significant reduction of GB3 levels was observed in GLA modRNA-treated cardiomyocytes, demonstrating that α-GAL enzymatic activity was restored. Together, our results validate the utility of iPSC-derived cardiomyocytes from affected individuals as a model to study disease processes in Fabry disease and the therapeutic potential of GLA modRNA treatment to reduce GB3 accumulation in the heart.


Asunto(s)
Enfermedad de Fabry , Células Madre Pluripotentes Inducidas , Humanos , Miocitos Cardíacos , ARN , Enfermedad de Fabry/genética , Enfermedad de Fabry/terapia , ARN Mensajero
17.
Lupus ; 32(9): 1043-1055, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37463793

RESUMEN

BACKGROUND: We aimed to identify factors associated with a significant reduction in SLE disease activity over 12 months assessed by the BILAG Index. METHODS: In an international SLE cohort, we studied patients from their 'inception enrolment' visit. We also defined an 'active disease' cohort of patients who had active disease similar to that needed for enrolment into clinical trials. Outcomes at 12 months were; Major Clinical Response (MCR: reduction to classic BILAG C in all domains, steroid dose of ≤7.5 mg and SLEDAI ≤ 4) and 'Improvement' (reduction to ≤1B score in previously active organs; no new BILAG A/B; stable or reduced steroid dose; no increase in SLEDAI). Univariate and multivariate logistic regression with Least Absolute Shrinkage and Selection Operator (LASSO) and cross-validation in randomly split samples were used to build prediction models. RESULTS: 'Inception enrolment' (n = 1492) and 'active disease' (n = 924) patients were studied. Models for MCR performed well (ROC AUC = .777 and .732 in the inception enrolment and active disease cohorts, respectively). Models for Improvement performed poorly (ROC AUC = .574 in the active disease cohort). MCR in both cohorts was associated with anti-malarial use and inversely associated with active disease at baseline (BILAG or SLEDAI) scores, BILAG haematological A/B scores, higher steroid dose and immunosuppressive use. CONCLUSION: Baseline predictors of response in SLE can help identify patients in clinic who are less likely to respond to standard therapy. They are also important as stratification factors when designing clinical trials in order to better standardize overall usual care response rates.


Asunto(s)
Lupus Eritematoso Sistémico , Humanos , Lupus Eritematoso Sistémico/tratamiento farmacológico , Inmunosupresores/uso terapéutico , Evaluación de Resultado en la Atención de Salud , Modelos Logísticos , Reino Unido , Índice de Severidad de la Enfermedad
18.
J Anat ; 243(6): 1066-1068, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37458159

RESUMEN

An average hemisphere of the human cerebral cortex contains over 100 individual folds (sulci). Many of these sulci have been overlooked by classic and modern atlases and neuroimaging tools. These sulci also show prominent individual differences: They can be broken into variable "complexes" and some sulci may not be present altogether.


Asunto(s)
Cerebro , Individualidad , Humanos , Corteza Cerebral , Neuroimagen , Membrana Celular
19.
Elife ; 122023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37276142

RESUMEN

Mitochondria play an important role in both normal heart function and disease etiology. We report analysis of common genetic variations contributing to mitochondrial and heart functions using an integrative proteomics approach in a panel of inbred mouse strains called the Hybrid Mouse Diversity Panel (HMDP). We performed a whole heart proteome study in the HMDP (72 strains, n=2-3 mice) and retrieved 848 mitochondrial proteins (quantified in ≥50 strains). High-resolution association mapping on their relative abundance levels revealed three trans-acting genetic loci on chromosomes (chr) 7, 13 and 17 that regulate distinct classes of mitochondrial proteins as well as cardiac hypertrophy. DAVID enrichment analyses of genes regulated by each of the loci revealed that the chr13 locus was highly enriched for complex-I proteins (24 proteins, P=2.2E-61), the chr17 locus for mitochondrial ribonucleoprotein complex (17 proteins, P=3.1E-25) and the chr7 locus for ubiquinone biosynthesis (3 proteins, P=6.9E-05). Follow-up high resolution regional mapping identified NDUFS4, LRPPRC and COQ7 as the candidate genes for chr13, chr17 and chr7 loci, respectively, and both experimental and statistical analyses supported their causal roles. Furthermore, a large cohort of Diversity Outbred mice was used to corroborate Lrpprc gene as a driver of mitochondrial DNA (mtDNA)-encoded gene regulation, and to show that the chr17 locus is specific to heart. Variations in all three loci were associated with heart mass in at least one of two independent heart stress models, namely, isoproterenol-induced heart failure and diet-induced obesity. These findings suggest that common variations in certain mitochondrial proteins can act in trans to influence tissue-specific mitochondrial functions and contribute to heart hypertrophy, elucidating mechanisms that may underlie genetic susceptibility to heart failure in human populations.


Asunto(s)
Insuficiencia Cardíaca , Proteoma , Animales , Ratones , Cardiomegalia/genética , ADN Mitocondrial/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Ratones Endogámicos , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteoma/metabolismo
20.
Cell Rep ; 42(6): 112588, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37267101

RESUMEN

Physiology is regulated by interconnected cell and tissue circadian clocks. Disruption of the rhythms generated by the concerted activity of these clocks is associated with metabolic disease. Here we tested the interactions between clocks in two critical components of organismal metabolism, liver and skeletal muscle, by rescuing clock function either in each organ separately or in both organs simultaneously in otherwise clock-less mice. Experiments showed that individual clocks are partially sufficient for tissue glucose metabolism, yet the connections between both tissue clocks coupled to daily feeding rhythms support systemic glucose tolerance. This synergy relies in part on local transcriptional control of the glucose machinery, feeding-responsive signals such as insulin, and metabolic cycles that connect the muscle and liver. We posit that spatiotemporal mechanisms of muscle and liver play an essential role in the maintenance of systemic glucose homeostasis and that disrupting this diurnal coordination can contribute to metabolic disease.


Asunto(s)
Relojes Circadianos , Ratones , Animales , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Hígado/metabolismo , Músculo Esquelético/metabolismo , Glucosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA