Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Am J Hum Genet ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39255798

RESUMEN

Same-sex sexual behavior has long interested genetics researchers in part because, while there is evidence of heritability, the trait as typically defined is associated with fewer offspring. Investigations of this phenomenon began in the 1990s with linkage studies and continue today with the advent of genome-wide association studies. As this body of research grows, so does critical scientific and ethical review of it. Here, we provide a targeted overview of existing genetics studies on same-sex sexual behavior, highlight the ethical and scientific considerations of this nascent field, and provide recommendations developed by the authors to enhance social and ethical responsibility.

2.
Cell Stem Cell ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39232561

RESUMEN

There is a paucity of human models to study immune-mediated host damage. Here, we utilized the GeoMx spatial multi-omics platform to analyze immune cell changes in COVID-19 pancreatic autopsy samples, revealing an accumulation of proinflammatory macrophages. Single-cell RNA sequencing (scRNA-seq) analysis of human islets exposed to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or coxsackievirus B4 (CVB4) viruses identified activation of proinflammatory macrophages and ß cell pyroptosis. To distinguish viral versus proinflammatory-macrophage-mediated ß cell pyroptosis, we developed human pluripotent stem cell (hPSC)-derived vascularized macrophage-islet (VMI) organoids. VMI organoids exhibited enhanced marker expression and function in both ß cells and endothelial cells compared with separately cultured cells. Notably, proinflammatory macrophages within VMI organoids induced ß cell pyroptosis. Mechanistic investigations highlighted TNFSF12-TNFRSF12A involvement in proinflammatory-macrophage-mediated ß cell pyroptosis. This study established hPSC-derived VMI organoids as a valuable tool for studying immune-cell-mediated host damage and uncovered the mechanism of ß cell damage during viral exposure.

3.
bioRxiv ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39149298

RESUMEN

There is a paucity of human models to study immune-mediated host damage. Here, we utilized the GeoMx spatial multi-omics platform to analyze immune cell changes in COVID-19 pancreatic autopsy samples, revealing an accumulation of proinflammatory macrophages. Single cell RNA-seq analysis of human islets exposed to SARS-CoV-2 or Coxsackievirus B4 (CVB4) viruses identified activation of proinflammatory macrophages and ß cell pyroptosis. To distinguish viral versus proinflammatory macrophage-mediated ß cell pyroptosis, we developed human pluripotent stem cell (hPSC)-derived vascularized macrophage-islet (VMI) organoids. VMI organoids exhibited enhanced marker expression and function in both ß cells and endothelial cells compared to separately cultured cells. Notably, proinflammatory macrophages within VMI organoids induced ß cell pyroptosis. Mechanistic investigations highlighted TNFSF12-TNFRSF12A involvement in proinflammatory macrophage-mediated ß cell pyroptosis. This study established hPSC-derived VMI organoids as a valuable tool for studying immune cell-mediated host damage and uncovered mechanism of ß cell damage during viral exposure.

4.
PLoS Comput Biol ; 20(8): e1012344, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39196899

RESUMEN

Recent studies show that cellular neighborhoods play an important role in evolving biological events such as cancer and diabetes. Therefore, it is critical to accurately and efficiently identify cellular neighborhoods from spatially-resolved single-cell transcriptomic data or single-cell resolution tissue imaging data. In this work, we develop CNTools, a computational toolbox for end-to-end cellular neighborhood analysis on annotated cell images, comprising both the identification and analysis steps. It includes state-of-the-art cellular neighborhood identification methods and post-identification smoothing techniques, with our newly proposed Cellular Neighbor Embedding (CNE) method and Naive Smoothing technique, as well as several established downstream analysis approaches. We applied CNTools on three real-world CODEX datasets and evaluated identification methods with smoothing techniques quantitatively and qualitatively. It shows that CNE with Naive Smoothing overall outperformed other methods and revealed more convincing biological insights. We also provided suggestions on how to choose proper identification methods and smoothing techniques according to input data.


Asunto(s)
Biología Computacional , Procesamiento de Imagen Asistido por Computador , Biología Computacional/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Análisis de la Célula Individual/métodos , Algoritmos , Programas Informáticos
5.
Mol Metab ; 86: 101973, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38914291

RESUMEN

BACKGROUND: Type 1 diabetes (T1D) is a complex multi-system disease which arises from both environmental and genetic factors, resulting in the destruction of insulin-producing pancreatic beta cells. Over the past two decades, human genetic studies have provided new insight into the etiology of T1D, including an appreciation for the role of beta cells in their own demise. SCOPE OF REVIEW: Here, we outline models supported by human genetic data for the role of beta cell dysfunction and death in T1D. We highlight the importance of strong evidence linking T1D genetic associations to bona fide candidate genes for mechanistic and therapeutic consideration. To guide rigorous interpretation of genetic associations, we describe molecular profiling approaches, genomic resources, and disease models that may be used to construct variant-to-gene links and to investigate candidate genes and their role in T1D. MAJOR CONCLUSIONS: We profile advances in understanding the genetic causes of beta cell dysfunction and death at individual T1D risk loci. We discuss how genetic risk prediction models can be used to address disease heterogeneity. Further, we present areas where investment will be critical for the future use of genetics to address open questions in the development of new treatment and prevention strategies for T1D.


Asunto(s)
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Predisposición Genética a la Enfermedad , Animales , Muerte Celular/genética , Estudio de Asociación del Genoma Completo
6.
Nature ; 624(7992): 621-629, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38049589

RESUMEN

Type 2 diabetes mellitus (T2D), a major cause of worldwide morbidity and mortality, is characterized by dysfunction of insulin-producing pancreatic islet ß cells1,2. T2D genome-wide association studies (GWAS) have identified hundreds of signals in non-coding and ß cell regulatory genomic regions, but deciphering their biological mechanisms remains challenging3-5. Here, to identify early disease-driving events, we performed traditional and multiplexed pancreatic tissue imaging, sorted-islet cell transcriptomics and islet functional analysis of early-stage T2D and control donors. By integrating diverse modalities, we show that early-stage T2D is characterized by ß cell-intrinsic defects that can be proportioned into gene regulatory modules with enrichment in signals of genetic risk. After identifying the ß cell hub gene and transcription factor RFX6 within one such module, we demonstrated multiple layers of genetic risk that converge on an RFX6-mediated network to reduce insulin secretion by ß cells. RFX6 perturbation in primary human islet cells alters ß cell chromatin architecture at regions enriched for T2D GWAS signals, and population-scale genetic analyses causally link genetically predicted reduced RFX6 expression with increased T2D risk. Understanding the molecular mechanisms of complex, systemic diseases necessitates integration of signals from multiple molecules, cells, organs and individuals, and thus we anticipate that this approach will be a useful template to identify and validate key regulatory networks and master hub genes for other diseases or traits using GWAS data.


Asunto(s)
Diabetes Mellitus Tipo 2 , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Predisposición Genética a la Enfermedad , Islotes Pancreáticos , Humanos , Estudios de Casos y Controles , Separación Celular , Cromatina/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/fisiopatología , Redes Reguladoras de Genes/genética , Estudio de Asociación del Genoma Completo , Secreción de Insulina , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Reproducibilidad de los Resultados
7.
bioRxiv ; 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37961277

RESUMEN

Complete characterization of the genetic effects on gene expression is needed to elucidate tissue biology and the etiology of complex traits. Here, we analyzed 2,344 subcutaneous adipose tissue samples and identified 34K conditionally distinct expression quantitative trait locus (eQTL) signals in 18K genes. Over half of eQTL genes exhibited at least two eQTL signals. Compared to primary signals, non-primary signals had lower effect sizes, lower minor allele frequencies, and less promoter enrichment; they corresponded to genes with higher heritability and higher tolerance for loss of function. Colocalization of eQTL with conditionally distinct genome-wide association study signals for 28 cardiometabolic traits identified 3,605 eQTL signals for 1,861 genes. Inclusion of non-primary eQTL signals increased colocalized signals by 46%. Among 30 genes with ≥2 pairs of colocalized signals, 21 showed a mediating gene dosage effect on the trait. Thus, expanded eQTL identification reveals more mechanisms underlying complex traits and improves understanding of the complexity of gene expression regulation.

8.
bioRxiv ; 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37873175

RESUMEN

Recent genome-wide association studies have established that most complex disease-associated loci are found in noncoding regions where defining their function is nontrivial. In this study, we leverage a modular massively parallel reporter assay (MPRA) to uncover sequence features linked to context-specific regulatory activity. We screened enhancer activity across a panel of 198-bp fragments spanning over 10k type 2 diabetes- and metabolic trait-associated variants in the 832/13 rat insulinoma cell line, a relevant model of pancreatic beta cells. We explored these fragments' context sensitivity by comparing their activities when placed up-or downstream of a reporter gene, and in combination with either a synthetic housekeeping promoter (SCP1) or a more biologically relevant promoter corresponding to the human insulin gene ( INS ). We identified clear effects of MPRA construct design on measured fragment enhancer activity. Specifically, a subset of fragments (n = 702/11,656) displayed positional bias, evenly distributed across up- and downstream preference. A separate set of fragments exhibited promoter bias (n = 698/11,656), mostly towards the cell-specific INS promoter (73.4%). To identify sequence features associated with promoter preference, we used Lasso regression with 562 genomic annotations and discovered that fragments with INS promoter-biased activity are enriched for HNF1 motifs. HNF1 family transcription factors are key regulators of glucose metabolism disrupted in maturity onset diabetes of the young (MODY), suggesting genetic convergence between rare coding variants that cause MODY and common T2D-associated regulatory variants. We designed a follow-up MPRA containing HNF1 motif-enriched fragments and observed several instances where deletion or mutation of HNF1 motifs disrupted the INS promoter-biased enhancer activity, specifically in the beta cell model but not in a skeletal muscle cell line, another diabetes-relevant cell type. Together, our study suggests that cell-specific regulatory activity is partially influenced by enhancer-promoter compatibility and indicates that careful attention should be paid when designing MPRA libraries to capture context-specific regulatory processes at disease-associated genetic signals.

9.
Nat Genet ; 55(7): 1149-1163, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37386251

RESUMEN

Hereditary congenital facial paresis type 1 (HCFP1) is an autosomal dominant disorder of absent or limited facial movement that maps to chromosome 3q21-q22 and is hypothesized to result from facial branchial motor neuron (FBMN) maldevelopment. In the present study, we report that HCFP1 results from heterozygous duplications within a neuron-specific GATA2 regulatory region that includes two enhancers and one silencer, and from noncoding single-nucleotide variants (SNVs) within the silencer. Some SNVs impair binding of NR2F1 to the silencer in vitro and in vivo and attenuate in vivo enhancer reporter expression in FBMNs. Gata2 and its effector Gata3 are essential for inner-ear efferent neuron (IEE) but not FBMN development. A humanized HCFP1 mouse model extends Gata2 expression, favors the formation of IEEs over FBMNs and is rescued by conditional loss of Gata3. These findings highlight the importance of temporal gene regulation in development and of noncoding variation in rare mendelian disease.


Asunto(s)
Parálisis Facial , Animales , Ratones , Parálisis Facial/genética , Parálisis Facial/congénito , Parálisis Facial/metabolismo , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Neuronas Motoras/metabolismo , Neurogénesis , Neuronas Eferentes
10.
Aging Cell ; 22(4): e13789, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36727578

RESUMEN

Age-related skeletal muscle atrophy or sarcopenia is a significant societal problem that is becoming amplified as the world's population continues to increase. The regeneration of damaged skeletal muscle is mediated by muscle stem cells, but in old age muscle stem cells become functionally attenuated. The molecular mechanisms that govern muscle stem cell aging encompass changes across multiple regulatory layers and are integrated by the three-dimensional organization of the genome. To quantitatively understand how hierarchical chromatin architecture changes during muscle stem cell aging, we generated 3D chromatin conformation maps (Hi-C) and integrated these datasets with multi-omic (chromatin accessibility and transcriptome) profiles from bulk populations and single cells. We observed that muscle stem cells display static behavior at global scales of chromatin organization during aging and extensive rewiring of local contacts at finer scales that were associated with variations in transcription factor binding and aberrant gene expression. These data provide insights into genome topology as a regulator of molecular function in stem cell aging.


Asunto(s)
Senescencia Celular , Genoma , Senescencia Celular/genética , Cromatina/genética , Músculo Esquelético
11.
Genome Biol ; 24(1): 31, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36810122

RESUMEN

The current version of the human reference genome, GRCh38, contains a number of errors including 1.2 Mbp of falsely duplicated and 8.04 Mbp of collapsed regions. These errors impact the variant calling of 33 protein-coding genes, including 12 with medical relevance. Here, we present FixItFelix, an efficient remapping approach, together with a modified version of the GRCh38 reference genome that improves the subsequent analysis across these genes within minutes for an existing alignment file while maintaining the same coordinates. We showcase these improvements over multi-ethnic control samples, demonstrating improvements for population variant calling as well as eQTL studies.


Asunto(s)
Genoma Humano , Genómica , Humanos , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN
12.
bioRxiv ; 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38168419

RESUMEN

Skeletal muscle, the largest human organ by weight, is relevant to several polygenic metabolic traits and diseases including type 2 diabetes (T2D). Identifying genetic mechanisms underlying these traits requires pinpointing the relevant cell types, regulatory elements, target genes, and causal variants. Here, we used genetic multiplexing to generate population-scale single nucleus (sn) chromatin accessibility (snATAC-seq) and transcriptome (snRNA-seq) maps across 287 frozen human skeletal muscle biopsies representing 456,880 nuclei. We identified 13 cell types that collectively represented 983,155 ATAC summits. We integrated genetic variation to discover 6,866 expression quantitative trait loci (eQTL) and 100,928 chromatin accessibility QTL (caQTL) (5% FDR) across the five most abundant cell types, cataloging caQTL peaks that atlas-level snATAC maps often miss. We identified 1,973 eGenes colocalized with caQTL and used mediation analyses to construct causal directional maps for chromatin accessibility and gene expression. 3,378 genome-wide association study (GWAS) signals across 43 relevant traits colocalized with sn-e/caQTL, 52% in a cell-specific manner. 77% of GWAS signals colocalized with caQTL and not eQTL, highlighting the critical importance of population-scale chromatin profiling for GWAS functional studies. GWAS-caQTL colocalization showed distinct cell-specific regulatory paradigms. For example, a C2CD4A/B T2D GWAS signal colocalized with caQTL in muscle fibers and multiple chromatin loop models nominated VPS13C, a glucose uptake gene. Sequence of the caQTL peak overlapping caSNP rs7163757 showed allelic regulatory activity differences in a human myocyte cell line massively parallel reporter assay. These results illuminate the genetic regulatory architecture of human skeletal muscle at high-resolution epigenomic, transcriptomic, and cell state scales and serve as a template for population-scale multi-omic mapping in complex tissues and traits.

13.
Genome Res ; 31(12): 2258-2275, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34815310

RESUMEN

Skeletal muscle accounts for the largest proportion of human body mass, on average, and is a key tissue in complex diseases and mobility. It is composed of several different cell and muscle fiber types. Here, we optimize single-nucleus ATAC-seq (snATAC-seq) to map skeletal muscle cell-specific chromatin accessibility landscapes in frozen human and rat samples, and single-nucleus RNA-seq (snRNA-seq) to map cell-specific transcriptomes in human. We additionally perform multi-omics profiling (gene expression and chromatin accessibility) on human and rat muscle samples. We capture type I and type II muscle fiber signatures, which are generally missed by existing single-cell RNA-seq methods. We perform cross-modality and cross-species integrative analyses on 33,862 nuclei and identify seven cell types ranging in abundance from 59.6% to 1.0% of all nuclei. We introduce a regression-based approach to infer cell types by comparing transcription start site-distal ATAC-seq peaks to reference enhancer maps and show consistency with RNA-based marker gene cell type assignments. We find heterogeneity in enrichment of genetic variants linked to complex phenotypes from the UK Biobank and diabetes genome-wide association studies in cell-specific ATAC-seq peaks, with the most striking enrichment patterns in muscle mesenchymal stem cells (∼3.5% of nuclei). Finally, we overlay these chromatin accessibility maps on GWAS data to nominate causal cell types, SNPs, transcription factor motifs, and target genes for type 2 diabetes signals. These chromatin accessibility profiles for human and rat skeletal muscle cell types are a useful resource for nominating causal GWAS SNPs and cell types.

14.
Am J Hum Genet ; 108(7): 1169-1189, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34038741

RESUMEN

Identifying the molecular mechanisms by which genome-wide association study (GWAS) loci influence traits remains challenging. Chromatin accessibility quantitative trait loci (caQTLs) help identify GWAS loci that may alter GWAS traits by modulating chromatin structure, but caQTLs have been identified in a limited set of human tissues. Here we mapped caQTLs in human liver tissue in 20 liver samples and identified 3,123 caQTLs. The caQTL variants are enriched in liver tissue promoter and enhancer states and frequently disrupt binding motifs of transcription factors expressed in liver. We predicted target genes for 861 caQTL peaks using proximity, chromatin interactions, correlation with promoter accessibility or gene expression, and colocalization with expression QTLs. Using GWAS signals for 19 liver function and/or cardiometabolic traits, we identified 110 colocalized caQTLs and GWAS signals, 56 of which contained a predicted caPeak target gene. At the LITAF LDL-cholesterol GWAS locus, we validated that a caQTL variant showed allelic differences in protein binding and transcriptional activity. These caQTLs contribute to the epigenomic characterization of human liver and help identify molecular mechanisms and genes at GWAS loci.


Asunto(s)
Cromatina/metabolismo , Hígado/metabolismo , Sitios de Carácter Cuantitativo , Secuencias de Aminoácidos , Sitios de Unión , Ensamble y Desensamble de Cromatina , Elementos de Facilitación Genéticos , Variación Genética , Estudio de Asociación del Genoma Completo , Humanos , Regiones Promotoras Genéticas , Unión Proteica , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Transcriptoma
15.
Diabetes ; 70(7): 1581-1591, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33849996

RESUMEN

Identifying the tissue-specific molecular signatures of active regulatory elements is critical to understand gene regulatory mechanisms. Here, we identify transcription start sites (TSS) using cap analysis of gene expression (CAGE) across 57 human pancreatic islet samples. We identify 9,954 reproducible CAGE tag clusters (TCs), ∼20% of which are islet specific and occur mostly distal to known gene TSS. We integrated islet CAGE data with histone modification and chromatin accessibility profiles to identify epigenomic signatures of transcription initiation. Using a massively parallel reporter assay, we validated the transcriptional enhancer activity for 2,279 of 3,378 (∼68%) tested islet CAGE elements (5% false discovery rate). TCs within accessible enhancers show higher enrichment to overlap type 2 diabetes genome-wide association study (GWAS) signals than existing islet annotations, which emphasizes the utility of mapping CAGE profiles in disease-relevant tissue. This work provides a high-resolution map of transcriptional initiation in human pancreatic islets with utility for dissecting active enhancers at GWAS loci.


Asunto(s)
Islotes Pancreáticos/fisiología , Sitio de Iniciación de la Transcripción , Elementos de Facilitación Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
16.
BMC Biol ; 19(1): 76, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33858413

RESUMEN

BACKGROUND: The pituitary gland is a neuroendocrine organ containing diverse cell types specialized in secreting hormones that regulate physiology. Pituitary thyrotropes produce thyroid-stimulating hormone (TSH), a critical factor for growth and maintenance of metabolism. The transcription factors POU1F1 and GATA2 have been implicated in thyrotrope fate, but the transcriptomic and epigenomic landscapes of these neuroendocrine cells have not been characterized. The goal of this work was to discover transcriptional regulatory elements that drive thyrotrope fate. RESULTS: We identified the transcription factors and epigenomic changes in chromatin that are associated with differentiation of POU1F1-expressing progenitors into thyrotropes using cell lines that represent an undifferentiated Pou1f1 lineage progenitor (GHF-T1) and a committed thyrotrope line that produces TSH (TαT1). We compared RNA-seq, ATAC-seq, histone modification (H3K27Ac, H3K4Me1, and H3K27Me3), and POU1F1 binding in these cell lines. POU1F1 binding sites are commonly associated with bZIP transcription factor consensus binding sites in GHF-T1 cells and Helix-Turn-Helix (HTH) or basic Helix-Loop-Helix (bHLH) factors in TαT1 cells, suggesting that these classes of transcription factors may recruit or cooperate with POU1F1 binding at unique sites. We validated enhancer function of novel elements we mapped near Cga, Pitx1, Gata2, and Tshb by transfection in TαT1 cells. Finally, we confirmed that an enhancer element near Tshb can drive expression in thyrotropes of transgenic mice, and we demonstrate that GATA2 enhances Tshb expression through this element. CONCLUSION: These results extend the ENCODE multi-omic profiling approach to the pituitary gland, which should be valuable for understanding pituitary development and disease pathogenesis.


Asunto(s)
Hipófisis , Animales , Ratones , Hipófisis/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Tirotropina/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transfección
17.
Nat Commun ; 12(1): 1307, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637709

RESUMEN

Interactions between transcription factors and chromatin are fundamental to genome organization and regulation and, ultimately, cell state. Here, we use information theory to measure signatures of organized chromatin resulting from transcription factor-chromatin interactions encoded in the patterns of the accessible genome, which we term chromatin information enrichment (CIE). We calculate CIE for hundreds of transcription factor motifs across human samples and identify two classes: low and high CIE. The 10-20% of common and tissue-specific high CIE transcription factor motifs, associate with higher protein-DNA residence time, including different binding site subclasses of the same transcription factor, increased nucleosome phasing, specific protein domains, and the genetic control of both chromatin accessibility and gene expression. These results show that variations in the information encoded in chromatin architecture reflect functional biological variation, with implications for cell state dynamics and memory.


Asunto(s)
Cromatina/metabolismo , ADN/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética/fisiología , Sitios de Unión , Línea Celular , Proteínas de Unión al ADN , Regulación de la Expresión Génica , Células Hep G2 , Humanos , Nucleosomas
18.
Nat Commun ; 11(1): 4912, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32999275

RESUMEN

Most signals detected by genome-wide association studies map to non-coding sequence and their tissue-specific effects influence transcriptional regulation. However, key tissues and cell-types required for functional inference are absent from large-scale resources. Here we explore the relationship between genetic variants influencing predisposition to type 2 diabetes (T2D) and related glycemic traits, and human pancreatic islet transcription using data from 420 donors. We find: (a) 7741 cis-eQTLs in islets with a replication rate across 44 GTEx tissues between 40% and 73%; (b) marked overlap between islet cis-eQTL signals and active regulatory sequences in islets, with reduced eQTL effect size observed in the stretch enhancers most strongly implicated in GWAS signal location; (c) enrichment of islet cis-eQTL signals with T2D risk variants identified in genome-wide association studies; and (d) colocalization between 47 islet cis-eQTLs and variants influencing T2D or glycemic traits, including DGKB and TCF7L2. Our findings illustrate the advantages of performing functional and regulatory studies in disease relevant tissues.


Asunto(s)
Glucemia/genética , Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad , Islotes Pancreáticos/metabolismo , Sitios de Carácter Cuantitativo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Glucemia/metabolismo , Línea Celular Tumoral , Estudios de Cohortes , Diabetes Mellitus Tipo 2/sangre , Diacilglicerol Quinasa/genética , Diacilglicerol Quinasa/metabolismo , Elementos de Facilitación Genéticos , Femenino , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Ratones , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , RNA-Seq , Análisis de Secuencia de ADN , Proteína 2 Similar al Factor de Transcripción 7/genética , Proteína 2 Similar al Factor de Transcripción 7/metabolismo , Adulto Joven
19.
Sci Rep ; 10(1): 17445, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33060836

RESUMEN

CHARGE syndrome, a rare multiple congenital anomaly condition, is caused by haploinsufficiency of the chromatin remodeling protein gene CHD7 (Chromodomain helicase DNA binding protein 7). Brain abnormalities and intellectual disability are commonly observed in individuals with CHARGE, and neuronal differentiation is reduced in CHARGE patient-derived iPSCs and conditional knockout mouse brains. However, the mechanisms of CHD7 function in nervous system development are not well understood. In this study, we asked whether CHD7 promotes gene transcription in neural progenitor cells via changes in chromatin accessibility. We used Chd7 null embryonic stem cells (ESCs) derived from Chd7 mutant mouse blastocysts as a tool to investigate roles of CHD7 in neuronal and glial differentiation. Loss of Chd7 significantly reduced neuronal and glial differentiation. Sholl analysis showed that loss of Chd7 impaired neuronal complexity and neurite length in differentiated neurons. Genome-wide studies demonstrated that loss of Chd7 leads to modified chromatin accessibility (ATAC-seq) and differential nascent expression (Bru-Seq) of neural-specific genes. These results suggest that CHD7 acts preferentially to alter chromatin accessibility of key genes during the transition of NPCs to neurons to promote differentiation. Our results form a basis for understanding the cell stage-specific roles for CHD7-mediated chromatin remodeling during cell lineage acquisition.


Asunto(s)
Cromatina/química , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/citología , Regulación del Desarrollo de la Expresión Génica , Células-Madre Neurales/citología , Neuronas/citología , Animales , Blastocisto/metabolismo , Diferenciación Celular , Elementos de Facilitación Genéticos , Epigénesis Genética , Perfilación de la Expresión Génica , Ratones , Ratones Noqueados , Factores de Transcripción/metabolismo
20.
Nat Commun ; 11(1): 2379, 2020 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-32404872

RESUMEN

Brown and beige fat share a remarkably similar transcriptional program that supports fuel oxidation and thermogenesis. The chromatin-remodeling machinery that governs genome accessibility and renders adipocytes poised for thermogenic activation remains elusive. Here we show that BAF60a, a subunit of the SWI/SNF chromatin-remodeling complexes, serves an indispensable role in cold-induced thermogenesis in brown fat. BAF60a maintains chromatin accessibility at PPARγ and EBF2 binding sites for key thermogenic genes. Surprisingly, fat-specific BAF60a inactivation triggers more pronounced cold-induced browning of inguinal white adipose tissue that is linked to induction of MC2R, a receptor for the pituitary hormone ACTH. Elevated MC2R expression sensitizes adipocytes and BAF60a-deficient adipose tissue to thermogenic activation in response to ACTH stimulation. These observations reveal an unexpected dichotomous role of BAF60a-mediated chromatin remodeling in transcriptional control of brown and beige gene programs and illustrate a pituitary-adipose signaling axis in the control of thermogenesis.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/deficiencia , Frío , Adipocitos Marrones/efectos de los fármacos , Adipocitos Marrones/metabolismo , Adipocitos Marrones/ultraestructura , Tejido Adiposo Beige/metabolismo , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Blanco/efectos de los fármacos , Hormona Adrenocorticotrópica/farmacología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sitios de Unión/genética , Células Cultivadas , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Expresión Génica/efectos de los fármacos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Termogénesis/efectos de los fármacos , Termogénesis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA