Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mol Divers ; 27(3): 1489-1499, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36036302

RESUMEN

Trifluoroacetic acid (TFA), due to its strong acidity and low boiling point, is extensively used in protecting groups-based synthetic strategies. Indeed, synthetic compounds bearing basic functions, such as amines or guanidines (commonly found in peptido or peptidomimetic derivatives), developed in the frame of drug discovery programmes, are often isolated as trifluoroacetate (TF-Acetate) salts and their biological activity is assessed as such in in vitro, ex vivo, or in vivo experiments. However, the presence of residual amounts of TFA was reported to potentially affect the accuracy and reproducibility of a broad range of cellular assays (e. g. antimicrobial susceptibility testing, and cytotoxicity assays) limiting the further development of these derivatives. Furthermore, the impact of the counterion on biological activity, including TF-Acetate, is still controversial. Herein, we present a focused case study aiming to evaluate the activity of an antibacterial AlkylGuanidino Urea (AGU) compound obtained as TF-Acetate (1a) and hydrochloride (1b) salt forms to highlight the role of counterions in affecting the biological activity. We also prepared and tested the corresponding free base (1c). The exchange of the counterions applied to polyguanidino compounds represents an unexplored and challenging field, which required significant efforts for the successful optimization of reliable methods of preparation, also reported in this work. In the end, the biological evaluation revealed a quite similar biological profile for the salt derivatives 1a and 1b and a lower potency was found for the free base 1c.


Asunto(s)
Aminas , Antibacterianos , Reproducibilidad de los Resultados , Antibacterianos/farmacología
2.
J Med Chem ; 61(20): 9162-9176, 2018 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-30265809

RESUMEN

Nowadays, the increasing of multidrug-resistant pathogenic bacteria represents a serious threat to public health, and the lack of new antibiotics is becoming a global emergency. Therefore, research in antibacterial fields is urgently needed to expand the currently available arsenal of drugs. We have recently reported an alkyl-guanidine derivative (2), characterized by a symmetrical dimeric structure, as a good candidate for further developments, with a high antibacterial activity against both Gram-positive and Gram-negative strains. In this study, starting from its chemical scaffold, we synthesized a small library of analogues. Moreover, biological and in vitro pharmacokinetic characterizations were conducted on some selected derivatives, revealing notable properties: broad-spectrum profile, activity against resistant clinical isolates, and appreciable aqueous solubility. Interestingly, 2 seems neither to select for resistant strains nor to macroscopically alter the membranes, but further studies are required to determine the mode of action.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Guanidina/química , Guanidina/farmacología , Alquilación , Antibacterianos/metabolismo , Células CACO-2 , Guanidina/metabolismo , Humanos , Pruebas de Sensibilidad Microbiana , Permeabilidad , Relación Estructura-Actividad
3.
Bioorg Med Chem Lett ; 27(15): 3332-3336, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28610983

RESUMEN

In the last ten years, we identified and developed a new therapeutic class of antifungal agents, the macrocyclic amidinoureas. These compounds are active against several Candida species, including clinical isolates resistant to currently available antifungal drugs. The mode of action of these molecules is still unknown. In this work, we developed an in-silico target fishing procedure to identify a possible target for this class of compounds based on shape similarity, inverse docking procedure and consensus score rank-by-rank. Chitinase enzyme emerged as possible target. To confirm this hypothesis a novel macrocyclic derivative has been produced, specifically designed to increase the inhibition of the chitinase. Biological evaluation highlights a stronger enzymatic inhibition for the new derivative, while its antifungal activity drops probably because of pharmacokinetic issues. Collectively, our data suggest that chitinase represent at least one of the main target of macrocyclic amidinoureas.


Asunto(s)
Antifúngicos/farmacología , Quitinasas/antagonistas & inhibidores , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Trichoderma/efectos de los fármacos , Antifúngicos/síntesis química , Antifúngicos/química , Quitinasas/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad , Trichoderma/enzimología
4.
ChemMedChem ; 10(11): 1892-900, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26332543

RESUMEN

The glucose transporter GLUT1 is frequently overexpressed in most tumor tissues because rapidly proliferating cancer cells rely primarily on glycolysis, a low-efficiency metabolic pathway that necessitates a very high rate of glucose consumption. Because blocking GLUT1 is a promising anticancer strategy, we developed a novel class of GLUT1 inhibitors based on the 4-aryl-substituted salicylketoxime scaffold. Some of these compounds are efficient inhibitors of glucose uptake in lung cancer cells and have a notable antiproliferative effect. In contrast to their 5-aryl-substituted regioisomers, the newly synthesized compounds reported herein do not display significant binding to the estrogen receptors. The inhibition of glucose uptake in cancer cells by these compounds was further observed by fluorescence microscopy imaging using a fluorescent analogue of glucose. Therefore, blocking the ability of tumor cells to take up glucose by means of these small molecules, or by further optimized derivatives, may be a successful approach in the development of novel anticancer drugs.


Asunto(s)
Antineoplásicos/farmacología , Metabolismo Energético/efectos de los fármacos , Transportador de Glucosa de Tipo 1/antagonistas & inhibidores , Neoplasias Pulmonares/metabolismo , Oximas/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Ratones , Estructura Molecular , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Oximas/síntesis química , Oximas/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA