Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; 41(9): 4013-4023, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35451934

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is one of the rapid spreading coronaviruses that belongs to the Coronaviridae family. The rapidly evolving nature of SARS-CoV-2 results in a variety of variants with a capability of evasion to existing therapeutics and vaccines. So, there is an imperative need to discover potent drugs that can able to disrupt the function of multiple drug targets to tackle the SARS-CoV-2 menace. Here in this study, we took the different targets of SARS-CoV-2 prepared in the Schrodinger maestro. The library of the DrugBank database is screened against the selected crucial targets. Our molecular docking, Molecular Mechanics/Generalized Born Surface Area (MMGBSA), and molecular dynamics simulation studies led to identifying dinaciclib and theodrenaline as potential drugs against multiple drug targets: main protease, NSP15-endoribonuclease and papain-like-protease, of SARS-CoV-2. Dinaciclib with papain-like protease and NSP15-endoribonuclease show the docking score of -7.015 and -8.737, respectively, while the theodrenaline with NSP15-endoribonuclease and main protease produced the docking score of -8.507 and -7.289, respectively. Furthermore, the binding free energy calculations with MM/GBSA and molecular dynamics simulation studies of the complexes confirm the reliability of the drugs. The selected drugs are capable of binding to multiple targets simultaneously, thus withstanding their activity of target disruption in different variants of SARS-CoV-2. Although, the repurposed drugs are showing potent activity, but may need further in-vitro and in-vivo validations.Communicated by Ramaswamy H. Sarma.


Asunto(s)
COVID-19 , Humanos , Simulación del Acoplamiento Molecular , Papaína , Reproducibilidad de los Resultados , SARS-CoV-2 , Péptido Hidrolasas , Endorribonucleasas , Simulación de Dinámica Molecular , Inhibidores de Proteasas
2.
J Biomol Struct Dyn ; 41(5): 1527-1539, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-34974820

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a member of the Coronaviridae family, causing major destructions to human life directly and indirectly to the economic crisis around the world. Although there is significant reporting on the whole genome sequences and updated data for the different receptors are widely analyzed and screened to find a proper medication. Only a few bioassay experiments were completed against SARS-CoV-2 spike protein. We collected the compounds dataset from the PubChem Bioassay database having 1786 compounds and split it into the ratio of 80-20% for model training and testing purposes, respectively. Initially, we have created 11 models and validated them using a fivefold validation strategy. The hybrid consensus model shows a predictive accuracy of 95.5% for training and 94% for the test dataset. The model was applied to screen a virtual chemical library of Natural products of 2598 compounds. Our consensus model has successfully identified 75 compounds with an accuracy range of 70-100% as active compounds against SARS-CoV-2 RBD protein. The output of ML data (75 compounds) was taken for the molecular docking and dynamics simulation studies. In the complete analysis, the Epirubicin and Daunorubicin have shown the docking score of -9.937 and -9.812, respectively, and performed well in the molecular dynamics simulation studies. Also, Pirarubicin, an analogue of anthracycline, has widely been used due to its lower cardiotoxicity. It shows the docking score of -9.658, which also performed well during the complete analysis. Hence, after the following comprehensive pipeline-based study, these drugs can be further tested in vivo for further human utilization.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Antivirales , Reposicionamiento de Medicamentos , SARS-CoV-2 , Humanos , COVID-19 , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , SARS-CoV-2/efectos de los fármacos , Antivirales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA